• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Local Structural Insights into Exotic Electronic States in 𝓭- and 𝑓-Electron Oxides with Joint Neutron and X-ray Pair Distribution Function Analysis

Yang, Long January 2021 (has links)
Quantum materials have strong electron correlation effects. According to the “structure-property” relationship, it is crucial to study the structure of quantum materials to better understand and manipulate the physical properties. The quantum effects are significant at the atomic microscopic length scale, which is not feasible to be studied by the average long-range structure measurement from conventional diffraction methods. Instead the local structure probe, pair distribution function (PDF) analysis, can effectively reveal the mystery of local structure, which is sensitive to the local behavior rather than the bulk average properties. In this thesis, the joint neutron and x-ray PDF (NXPDF) method is implemented. Because of their different interactions with matters, a combination of neutron and x-ray scattering can help comprehensively understand the atomic structures of some strongly correlated d- and f-electron systems that are difficult to be studied alone. Though powerful for understanding the structure of complex materials, performing the PDF modeling and structure refinement usually requires a lot of work on model selection for candidate structures. To address this problem, a new approach is developed to obtain candidate atomic structures from NXPDF, called structure-mining, in a highly automated way. It fetches, from open structural databases, all the structures meeting the experimenter's search criteria and performs structure refinements on them without human intervention. Tests on various material systems show the effectiveness and robustness of the algorithm in finding the correct atomic crystal structure. It works on crystalline and nanocrystalline materials including complex oxide nanoparticles and nanowires, low-symmetry and locally distorted structures, and complicated doped and magnetic materials. The examples of applying structure-mining method to identify the local structures of Pr₆O₁₁, BaFeₓTi₁−ₓO₃, and MgTi₂O₄ materials, which have strongly correlated 𝓭- and 𝑓-orbital electronic states under study in the thesis, are shown as well. This approach could greatly reduce the traditional structure searching work for quantum materials as well as other systems. The NXPDF method is first applied to the praseodymium oxide semiconductor nanoparticles to investigate the local structure behavior accompanied by the loss of electrical conductivity when temperature changes. The Pr and O sublattices can be determined precisely by x-ray and neutron PDF, respectively, because of their distinct x-ray atomic form factors and neutron scattering lengths. A combination of a highly ordered structure motif and a locally distorted oxygen deficient structure environment can describe the measured NXPDFs reasonably well. The iron doped barium titanate BaFeₓTi₁−ₓO₃ system is also investigated using PDF methods for studying the multiferroic behavior in the nanocrystals, which are synthesized near room temperature. The perovskite structure is established to be non-centrosymmetric, consistent with predictions of the pseudo-Jahn-Teller effect being the underlying cause of off-center displacements of B-site (Ti and doped Fe) atom, lowering the symmetry in order to make additional overlap between the 3d orbital of Ti and neighboring O atoms to create π molecular orbitals. This triggers the spontaneous polarization of the crystal. The PDF results establish that Fe is successfully doped into the ferroelectric BaTiO₃ phase, and the measured dielectric and magnetic properties also validate the multiferroic behavior of the synthesized BaFeₓTi₁−ₓO₃ nanocrystals. In addition, the NXPDF analysis is also conducted on the MgTi₂O₄ system to track the evolution of the local atomic structure across the temperature-dependent metal-insulator transition, and the results reveal that local tetragonality is persistent, preformed with reduced magnitude, deep in the metallic and on average cubic regime. Significantly, the high temperature local state revealed by PDF is not continuously connected to the orbitally ordered band insulator ground state and the transition cannot be characterized as a trivial order-disorder type. The shortest Ti-Ti bond lengths corresponding to spin singlet dimers shift to longer distances on warming but are still shorter than those seen in the cubic average structure. These seemingly conflicting observations could be reconciled within the model of a local fluctuating t₂g orbital-degeneracy-lifted (ODL) precursor state. These results undoubtedly establish the effectiveness of the joint neutron and x-ray PDF analysis to investigate the structure-property relationship on the sub-nanometer length scale of strongly correlated electron materials, utilizing the complementary structure information obtained from neutron and x-ray scattering.
12

Local structure of nanocrystalline, nanoporous, and heterogeneous functional materials: advancing tools for extracting order from disorder

Tao, Songsheng January 2023 (has links)
Nanocrystalline, nanoporous, and heterogeneous functional materials have a range of unique physical and chemical properties at the nanoscale that make them useful in various fields such as gas storage, sensing, catalysis, and construction. However, these materials have complex and varied internal structures make them difficult to analyze using traditional methods. In this work, advanced tools were presented that combine several existing algorithms and techniques to enable efficient and accurate analysis of the structures of these materials. The tools were tested on well-studied systems (TiO2 nanoparticles) and novel materials (multiple metal organic frameworks), and the results showed that they produced accurate and reliable results. These results have contributed to important scientific discoveries, some of which are highlighted in this thesis. First, an automated platform for x-ray scattering experiments and a streaming data pipeline were developed to determine pair distribution functions, which were used to study nanocrystalline, nanoporous, and heterogeneous functional materials. A systematic workflow was then proposed and tested to analyze the phases and morphologies of metal oxide nanoparticles. Using the data pipeline and workflow, the effects of temperature on phases, morphologies, and structure order during the synthesis of titanium oxide (bronze) nanoparticles were demonstrated. Specific tools were then designed to analyze the structures of nanoporous materials based on the disorder in their complex structures. The turbostratic disorder in zirconium phosphates was analyzed, and the potential to tune disorders using phosphoric acid concentration was demonstrated. In addition, the glass transition in metal-organic frameworks was detected, and a reminiscent correlation between metal sites in the glass state was discovered. Furthermore, evidence of polar solvent-induced lattice arrangement in an aluminum metal-organic framework was found using the analysis of pair distribution functions. Finally, a simple but effective algorithm was proposed to study the grain distribution and mosaicity in heterogeneous crystalline materials, moving beyond the study of homogeneous systems. Overall, these studies aim to enable faster and more comprehensive analysis of the disordered structures in nanocrystalline, nanoporous, and heterogeneous materials, which could have applications in fields including photocatalysis, optical or gas sensing, radioactive waste storage, and metallurgical industry.
13

Polymer Nanocomposite Membranes for Selective Ion Transport Applications

Tekell, Marshall Clark January 2024 (has links)
Soft materials are indispensable components of energy storage and conversion technologies necessary for the renewable energy transition. Two key examples are electrolytes used in solid-state batteries and ion-exchange membranes used in electrolysis and electrodialysis. The figures of merit for these applications are often summarized using upper-bound relationships, which define the best possible combination of performance metrics for a given material. A promising route to break the upper-bound and to improve upon the state-of-the-art is engineering materials at the nanoscale. Two commonly employed strategies are the use of block copolymers and polymer nanocomposites. In the former, the sequence of different monomers along the backbone of the polymer chain is varied; in the latter, ceramic nanoparticles are mixed with polymers and processed to achieve different dispersion states. In both of these classes of materials, the self-assembly of molecular and colloidal components controls the structure and function of the resulting material. This dissertation investigates these structure-property relationships in model soft nanomaterials, namely colloids, polymer nanocomposites, and ion-exchange membranes, using experiments, molecular dynamics simulations, and theory. The dissertation can be divided into three parts. The first, Chapters 2 and 3, investigates polymer and polymer nanocomposite electrolytes for applications in solid-state Li batteries. Chapter 2 investigates the coarse-graining and force field parameterization of polymer electrolytes for molecular dynamics simulations. Chapter 3 reports the experimental characterization of polymer nanocomposite electrolytes, with a key focus on understanding how the particle dispersion state affects the ionic conductivity and mechanical reinforcement of the composite. The second part, Chapters 4 and 5, studies fundamental structure-property relationships in two types of polymer nanocomposites. In Chapter 4, the surface chemistry of hydrophilic silica nanoparticles is altered to promote miscibility in organic solvents and in semicrystalline polymers. In these "bare" nanocomposites, the particles are stabilized against aggregation via the adsorption of a polymer bound layer, which is quantitatively studied via small angle X-ray scattering. In Chapter 5, the surface-modified particles are densely grafted with polymer chains via surface-initiated polymerization to obtain matrix-free polymer grafted nanoparticle films. The collective dynamics of the nanoparticle cores in these self-supporting films, where all of the polymer is grafted to the particle surface, is then measured using X-ray photocorrelation spectroscopy at a variety of temperatures. In Chapters 6 and 7, random copolymer chemistries are used to create cation- and anion-exchange membranes, respectively, with controlled ion-exchange capacity and swelling behavior. The key finding of Chapter 6 is that water-lean cation-exchange membranes selectively transport ions with low free energies of hydration, allowing the design of specific-ion selective electrodialysis stacks for Li+ recovery applications. The analogous properties of anion-exchange membranes are suggested as an avenue for future research.
14

Anharmonic Phonon Behavior using Hamiltonian constructed via Irreducible Derivatives

Xiao, Enda January 2023 (has links)
Phonon anharmonicity is critical for describing various phenomena in crystals, including lattice thermal conductivity, thermal expansion, structural phase transitions, and many others. Including anharmonicity in the calculation of condensed matter observables developed rapidly in the past decade. First-principles computation of cubic phonon interactions have been performed in many systems, and the quartic interactions have begun to receive more attention. In this study, reliable Hamiltonians are constructed purely in terms of quadratic, cubic, and quartic irreducible derivatives, which are calculated efficiently and precisely using the lone and bundled irreducible derivative approaches (LID and BID). The resulting Hamiltonians give rise to a nontrivial many-phonon problem which requires some approximation in order to compute observables. We implemented self-consistent diagrammatic approaches to evaluate the phonon self-energy, including the Hartree-Fock approximation for phonons and quasiparticle perturbation theory, where both the 4-phonon loop and the real part of the 3-phonon bubble are employed during self-consistency. Additionally, we implemented molecular dynamics in order to yield the numerically exact solution in the classical limit. The molecular dynamics solution is robust for directly comparing to experimental results at sufficiently high temperatures, and for assessing our diagrammatic approaches in the classical limit. Anharmonic vibrational Hamiltonians were constructed for CaF₂, ThO₂, and UO₂. Diagrammatic approaches were used to evaluate the phonon self-energy, yielding the phonon lineshifts and linewidths and the thermal conductivity within the relaxation time approximation. Our systematic results allowed us to resolve the paradox of why first-principles phonon linewidths strongly disagree with results extracted from inelastic neutron scattering (INS). We demonstrated that the finite region in reciprocal space required in INS data analysis, the 𝑞-voxel, must be explicitly accounted for within the calculation in order to draw a meaningful comparison. We also demonstrated that the 𝑞-voxel is important to properly compare the spectrum measured in inelastic X-ray scattering (IXS), despite the fact that the ?-voxel is much smaller. Accounting for the 𝑞-voxel, we obtained good agreement for the scattering function linewidths up to intermediate temperatures. Additionally, good agreement was obtained for the thermal conductivity. Another topic we addressed is translation symmetry breaking caused by factors such as defects, chemical disorders, and magnetic order. These phenomena will lead to shifts and a broadening of the phonon spectrum, and formally the single-particle Green’s function encodes these effects. However, it is often desirable to obtain an approximate non-interacting spectrum that contains the effective shifts of the phonon frequencies, allowing straightforward comparison with experimentally measured scattering peak locations. Such an effective phonon dispersion can be obtained using a band unfolding technique, and in this study, we formulated unfolding in the context of irreducible derivatives. We showcased the unfolding of phonons in UZr₂, where chemical disorder is present, and compared the results with experimental IXS data. Additionally, we extended the unfolding technique to anharmonic terms and demonstrated this using 3rd and 4th order terms in the antiferromagnetic phase of UO₂.
15

Caractérisation biophysique des interactions entre le Lanréotide et des membranes lipidiques / Biophysical characterization of interactions between the Lanreotide and lipid membranes

Chervy, Pierre 02 October 2017 (has links)
L’objectif de ce travail est de caractériser l’interaction entre le Lanréotide – un octapeptide dicationique – et des membranes composées de lipides. Bien que ce peptide soit très soluble, il possède des propriétés d’autoassemblage. Au-delà d’une concentration critique – qui est sensible à la température et à la force ionique – ce peptide s’auto-assemble en nanotubes dont la structure a été résolue par l’équipe. Ce travail de thèse comporte deux volets : d’une part l’étude de l’interaction entre le Lanréotide et des membranes anioniques, d’autre part l’étude de l’interaction entre le Lanréotide et des membranes neutres.Nous adoptons une approche structurale afin de caractériser les mélanges membrane-peptide : diffusion de rayons X, spectroscopie infrarouge (ATR-FTIR), microscopie électronique (coloration négative et cryofracture) ; ainsi qu’une approche quantitative (ultrafiltration et dosage) afin de déterminer la stœchiométrie des interactions. En présence de lipides anioniques, le Lanréotide interagit en totalité avec les membranes jusqu’à les saturer. Cette interaction, qui n’est pas abolie à forte force ionique (2M de NaCl ou de phosphate), provoque un autoassemblage du peptide à la surface des membranes. Ce phénomène génère des autoassemblages mixtes constitués d’un empilement de bicouches de peptide prises en sandwich entre des bicouches de lipides. Ces empilements s’enroulent selon une spirale d’Archimède, c’est-à-dire une spirale régulière dont le pas est constant. Dans ces assemblages mixtes le peptide est organisé dans un nouveau mode d’assemblage dont la structure est ici résolue.Dans le cas des mélanges membranes neutre-Lanréotide, un coefficient de partage du peptide entre l’eau et les lipides est mis en évidence. Ceci suggère que dans ces conditions le peptide peut traverser les membranes. Enfin l’interaction du Lanréotide avec ces membranes provoque une diminution de sa concentration critique d’assemblage. / The aim of this work is to characterize the interaction between the Lanreotide – a dicationic octapeptide – and membranes composed of lipids. Even if the peptide is very soluble, it has self-assembling properties. Above the critical concentration – which is sensitive to both temperature and ionic strength – the peptide self-assembles into nanotubes whose structure has been solved by the team. The present work is divided into two parts: on one side the study of the interaction of the Lanreotide with anionic membranes, on the other one the study of the interaction of the Lanreotide with neutral membranes.We adopted a structural approach to characterize the membrane-peptide mixture: X-ray scattering, vibrational spectroscopy (ATR-FTIR), electron microscopy (negative staining and freeze-fracture) ; we also used a quantitative approach (ultrafiltration and peptide quantification) in order to determine the stoichiometry of the interaction. In the presence of anionic lipids, the peptide interacts with membranes until its saturation. This interaction, which is not abolished at high ionic strength (2M NaCl or phosphate), induces the self-assembly of the peptide at the surface of the membrane. This phenomenon generates mixed self-assemblies composed of a stack of peptide bilayers sandwiched by lipids bilayers. These stacks wrap into an Archimedian spiral which is a regular spiral with a constant step. In these mixed assemblies, the peptide is organized in a new architecture compared to the self-assemble nanotubes. This new structure has been characterized and solved in this study.In the case of neutral membrane-Lanreotide mixture, the peptide partitions between water and lipids. This observation suggests that in this condition the peptide is able to cross the membranes. The peptide-membrane interaction also decreases the critical concentration of the peptide.
16

Croissance par voie chimique et propriétés de transport électronique de nanofils d'or / Chemical growth and electronic transport properties of gold nanowires

Loubat, Anais 31 March 2014 (has links)
Les nanofils d’or ultrafins sont des objets fascinants présentant une morphologie quasi 1D, leur diamètre n’excédant par 2 nm pour une longueur micrométrique. Les quelques 30 atomes qui composent la section de ses fils sont principalement des atomes de surface, permettant d’envisager des applications de type capteurs. De plus, l’anisotropie de forme unique pourrait permettre un confinement électronique unidimensionnel, menant à de nouvelles propriétés physiques. Nous avons réalisé une étude fondamentale de la synthèse et réaliser une première étude de transport sur une assemblée de nanofils.La première partie du manuscrit, divisée en quatre chapitres, consiste en l’étude du mécanisme de croissance de ces nanofils ultrafins. Suite à une analyse détaillée des modèles proposés, nous introduisons la technique de diffusion des rayons X aux petits angles (SAXS) utilisée pour nos études mécanistiques. Le chapitre 3 est consacré à l’étude de la synthèse de nanofils en milieu confiné. Contrairement aux postulats précédents, un suivi cinétique in-situ par SAXS nous a permis de montrer que la phase lamellaire n’intervenait pas dans la croissance des objets, voir même qu’elle était détrimentaire à leur formation. Le dernier chapitre présente la synthèse en milieu isotrope. Un mécanisme de croissance efficace où les sphères jouent le rôle de germe est avancé. L’auto-organisation des fils en solution suivant une phase hexagonale appuie l’hypothèse d’une stabilisation des fils par une double couche d’oleylamine et de chlorure d’ammonium. Un mécanisme de croissance analogue aux mécanismes proposés pour les bâtonnets d’or dans l’eau est donc proposé.La deuxième partie du manuscrit, divisée en trois chapitres, consiste en une caractérisation des propriétés de transport électronique dans ces nanofils d’or ultrafins. Nous dressons, dans un premier temps, un bilan des différents régimes de transport observés au sein de nano-objets de basse dimensionnalité. Suite aux étapes indispensables de dépôt et de connexion, le troisième chapitre présente les premières mesures de transport effectuées sur des assemblées de nanofils d’or faiblement couplées. Nous mettons ainsi en évidence, grâce à une étude sur une large gamme de températures et de tensions de polarisation, un transport de charge coopératif dans le cadre d’un régime de blocage de Coulomb. / Ultra-narrow gold nanowires are captivating objects with a quasi-1D morphology, with a diameter lower than 2 nm and a micrometric length. The few 30 atoms which compose the wire section are mainly surface atoms, allowing to consider applications such as sensors. Moreover, the unique anisotropic shape may permit a one-dimensional electronic confinement, leading to new physical properties. We conducted a fundamental study of the synthesis and a preliminary transport study on an assembly of nanowires.The first part of the manuscript, divided into four chapters, consist of the growth mechanism study of these ultra-narrow gold nanowires. Further to a detail analysis of the proposed models, we present the small angle X-rays scattering (SAXS) technique used for our mechanistic studies. The third chapter deals with the study of the nanowires synthesis in a confined environment. Unlike the previous postulates, a in-situ kinetic monitoring by SAXS allow us to point out that the lamellar phase was not involved in the objects’ growth, even more that it was detrimental for their formation. The last chapter presents the synthesis in an isotropic system. An efficient growth mechanism where the spheres act as seeds is advanced. The wires’ self-assembly in solution in a hexagonal super-lattice supports the hypothesis of wire stabilization by a bilayer of oleylamine and oleylammonium chloride. Therefore, a growth mechanism similar to the one proposed in the case of gold nanorods in water is proposed.The second part of the manuscript, divided into three chapters, consist in a characterization of the electronic transport properties in these ultra-narrow gold nanowires. At first, we report on the different types of transport observed low-dimensionality nano-objects. Further to the necessary deposit and connection steps, the third chapter presents the first transport measurements performed weakly coupled assemblies of gold nanowires. We highlight, through a study on a wide range of temperatures and bias voltages, a cooperative charges transport through a Coulomb blockade regime.
17

Dynamique de réseau et conductivité thermique dans les alliages métalliques complexes / Lattices dynamics and thermal conductivity in the complex metallic alloys

Lory, Pierre-François 24 September 2015 (has links)
Les alliages métalliques complexes sont des matériaux qui présentent un ordre à longue distance caractérisé par de grandes mailles comprenant plusieurs centaines d’atomes disposés en clusters. Une propriété caractéristique des CMAs est une conductivité thermique de réseau, dû aux phonons, très faible (~1.3 W/m.K), ce qui donne un intérêt pour leur utilisation comme thermoélectriques. Malgré de récentes avancées sur les connaissances de leurs structures, la nature des modes de vibrations des phonons dans ces réseaux restent une question ouverte : quel est le rôle des clusters ? Est-ce qu’il y a des modes critiques ? Pour répondre à cette problématique, mon projet de thèse a eu pour objectif de comprendre la nature des modes de vibrations à l’échelle atomique et la relation avec la conductivité thermique de réseau sur deux systèmes : la phase o-Al13Co4 qui est un approximant de la phase décagonale AlNiCo et le clathrate Ba8Ge40.3Au5.25, présentant des propriétés thermoélectriques. Mes investigations combinent des expériences de diffusion inélastiques des neutrons et des rayons-X et des simulations à l’échelle atomique.Une analyse détaillée des résultats expérimentaux obtenus par diffusion inélastique sur monocristaux pour les branches acoustiques a permis de mettre en évidence, pour la première fois, un temps de vie fini des phonons acoustiques lorsqu’ils interagissent avec les modes de basses énergies liés aux atomes dans les clusters. Pour les deux systèmes étudiés, nous observons que la branche acoustique n’est plus linéaire et le temps de vie des phonons acoustiques est réduit à quelques picosecondes. Ce faible temps de vie dépend peu de la température comme la conductivité thermique. Les simulations à l’échelle atomique, en utilisant des calculs DFT et des potentiels de pairs oscillants pour des simulations de dynamique moléculaire, ont permis de montrer que ce temps de vie est un effet anharmonique lié au désordre de structure. Les simulations confirment la faible dépendance en température de ce temps de vie. Dans o-Al13Co4, nous avons calculé la conductivité thermique avec la dynamique moléculaire et la méthode de Green-Kubo. Pour Ba8Ge40.3Au5.25 nous avons appliqué un modèle phénoménologique pour l’estimer en utilisant les résultats INS. En conclusion nous démontrons les effets de la complexité structurale sur la conductivité thermique en lien avec la dynamique de réseau. / Complex metallic alloys are long range ordered materials, characterized by large cells, comprising several hundreds of atoms and cluster building blocks. A key property of CMAs is the low lattice thermal conductivity (1.3 W/m. K), which suggests a potential application for CMAs for thermoelectricity. Despite recent advances structure determination, the nature of the phonons modes remains an open question: do the clusters playing a role? Are there critical modes? To tackle this problem, my PhD project aims to understand the vibrational modes at atomic scale and the relation to lattice thermal conductivity in o-Al13Co4 which is an approximant of the quasicrystal, decagonal phase AlNiCo and the clathrate Ba8Ge40.3Au5.25. In this worked we have used Inelastic Neutron and X-ray Scattering experiments and atomic scale simulations, based on density functional theory and empirical pair potentials.A detailed analysis of the results of inelastic scattering experiments on monocrystals for the acoustic branches have shown, for the first time, a finite lifetime for acoustic phonons when they interact with the low-lying dispersion-less excitations due to atoms in the cluster. In both systems, we observe that when an acoustic branch flattens near the zone boundary, the phonon lifetime is a few picoseconds. The phonon lifetime is approximately independent of temperature like the lattice thermal conductivity. Lattice and molecular dynamics simulations with DFT and empirical, oscillating pair potentials show that the finite phonon lifetime is an anharmonic effect, due to structural disorder, explaining the weak temperature of the phonon lifetime. For o-Al13Co4, we have calculated the thermal conductivity with the Green-Kubo method based on equilibrium MD simulations. For Ba8Ge40.3Au5.25 we have developed a phenomenological model based on individual phonon modes. In conclusion, we have demonstrated how structural complexity affects thermal conductivity through the lattice dynamics.

Page generated in 0.1197 seconds