• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implications for XMRV Infections in Prostate Cancer

Hong, Seunghee 23 January 2010 (has links)
No description available.
2

Evaluating XMRV As An Indicator Of Prostate Cancer Risk

Barton, Maria 12 July 2011 (has links)
No description available.
3

The Role of APOBEC3 in Controlling Retroviral Spread and Zoonoses

Rosales Gerpe, María Carla January 2014 (has links)
APOBEC3 (A3) proteins are a family of host-encoded cytidine deaminases that protect against retroviruses and other viral intruders. Retroviruses, unlike other viruses, are able to integrate their genomic proviral DNA within hours of entering host cells. A3 proteins hinder retroviral infectivity by editing retroviral replication intermediates, as well as by inhibiting retroviral replication and integration through deamination-independent methods. These proteins thus constitute the first line of immune defense against endogenous and exogenous retroviral pathogens. The overall goal of my Master's project was to better understand the critical role A3 proteins play in restricting inter- and intra-host transmission of retroviruses. There are two specific aspects that I focused on: first, investigating the role of mouse APOBEC3 (mA3) in limiting the zoonotic transmission of murine leukemia retroviruses (MLVs) in a rural environment; second, to identify the molecular features in MLVs that confer susceptibility or resistance to deamination by mA3. For the first part of my project, we collected blood samples from dairy and production cattle from four different geographical locations across Canada. We then designed a novel PCR screening strategy targeting conserved genetic regions in MLVs and Mouse Mammary Tumor Virus (MMTV) and MMTV-like betaretroviruses. Our results indicate that 4% of animals were positive for MLV and 2% were positive for MMTV. Despite crossing the species barrier by gaining entry into bovine cells, our study also demonstrates that the bovine A3 protein is able to potently inhibit the spread of these murine retroviruses in vitro. The next question we asked was whether mA3 could also mutate and restrict murine endogenous retroviruses and thereby partake in limiting zoonotic transmission. Moloney MLV and AKV MLV are two highly homologous murine gammaretroviruses with opposite sensitivities to restriction by mA3: MoMLV is resistant to restriction and deamination while AKV is sensitive to both. Design of MoMLV/AKV hybrid viruses enabled us to map the region of mA3 resistance to the region encoding the glyco-Gag accessory protein. Site-directed mutagenesis then allowed us to correlate the number of N-linked glycosylation sites with the level of resistance to deamination by mA3. Our results suggest that Gag glycosylation is a possible viral defence mechanism that arose to counteract the evolutionary pressure imposed by mA3. Overall, my projects show the important role A3 proteins play in intrinsic immunity, whether defending the host from foreign retroviral invaders or endogenous retroviral foes.

Page generated in 0.0219 seconds