• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forsteritic Determination of Olivine by XRD Analysis

Ridley, Kevin J. D. 05 1900 (has links)
<p> Fo. determinative curves for lattice planes (301), (311), and (401) were calculated from four natural olivines. 2θ values for each olivine were computed from the lattice parameters using the reciprocal lattice d* for the orthorhombic crystal system d*hkl = [h^2/a^2 + k^2/b^2 + l^2/c^2]^1/2 combined with the Bragg equation λCuKα = 2 sin θhk / d*hkl </p> <p> XRD patterns for 10 natural olivines were used to determine their respective Fo. composition. Errors were calculated for the Fo. composition of the natural olivines yielding an accuracy from the determinative curves of± 6 wt. % Fo. An olivine of 90 wt. % Fo. was X-rayed and plotted along the determinative curves giving values of Fo. composition for (301), (311) and (401) of 89, 87 and 85 wt. % respectively.</p> <p> The effect of Ni, Mn and Ca substituting into the (Mg, Fe) olivine structure causing Δ2θ shifts was also considered and found to be negligible for natural (Mg, Fe) olivines.</p> / Thesis / Bachelor of Science (BSc)
2

Study of sinter reactions when fine iron ore is replaced with coarse ore, using an infrared furnace and sinter pot tests

Nyembwe, Mutombo Alainch 25 June 2012 (has links)
The effect of replacing fine ore by coarse ore on sintering reactions was investigated using an infrared furnace on laboratory scale and sinter pots on pilot plant scale. Five sinter mixes were prepared by changing the percentage coarse ore from 0% to 100% in 25% increments. Coarse ore fraction, sintering temperature, holding time and oxygen partial pressure were selected as sintering parameters, and two-level factorial design was used for identification of parameters that significantly influence the formation of sinter phases. Experimental results showed that the coarse ore fraction has a higher effect on the sintering process compared to those of other parameters. The experiment design also enabled to set these parameters to their optimum values. The porosity of compacted pellets was measured using a helium pycnometer. The replacement of fine ore by coarse ore resulted in a decrease in porosity (increase in packing density) of compacted pellets. The particles are closer to each other in pellets consisting of more coarse particles than fine particles. Laboratory experiments were performed at 1300°C in air, using a high heating rate (15°C/s). The holding time was set to 2.5 minutes. X-ray diffraction (XRD), reflected light microscopy (RLM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize sintering reactions and sinter phases. XRD analysis revealed that sintered pellets consisted of hematite, SFCA, SFCA-I and calcium silicate. The proportions of SFCA slightly increased when the fraction of coarse ore varied from 0% to 25%, but decreased with a further increase in percentage coarse ore. At 25% coarse ore fraction, the porosity of the compacted pellets decreased, resulting in an increase in packing density and sintering rate. More hematite reacted, resulting in the formation of high amounts of SFCA. Above 25% coarse ore fraction, the amount of hematite increased, and the concentrations of columnar SFCA decreased despite a further decrease in porosity. This was attributed to the decrease in reaction surface area for coarse ore, and the short reaction time, which limited the extent of reaction of the coarse particles. The variation of SFCA-I and calcium silicate was not significant under laboratory conditions. Reflected light microscopy and SEM analysis easily identified two major sinter phases: hematite and SFCA. A clear distinction between the different types of SFCA could not be made using EDS analysis. Sinter pot tests were carried out in order to examine the effect of coarse ore fraction on physical and metallurgical properties of sinters. The tumbler and reduction disintegration indexes increased with increasing coarse ore fraction in the sinter bed. This was presumably due to the increase in amounts of hematite and decrease in surface area for reaction. Consequently, the reducibility of sinter decreased as the percentage coarse ore increased. This study has concluded that the presence of 25% coarse ore in the sinter mix led to enhance sintering reactions. The amounts of SFCA increased, and sinter quality was improved. It is recommended that in future work, sintering reactions should further be investigated by also measuring the permeability of the sinter bed and the reaction surface area of solid particles. Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
3

Studium budičů anhydritových maltovin / Study of Exciters of Anhydrite Binders

Duda, Štěpán January 2018 (has links)
Presented diploma thesis is dealing with study of exciters of anhydrite binders. Theoretical part is dedicated to study of available domestic and foreign literature on a given topic. Attention is also paid to the study of the current research at the institute of THD. In the experimental part is developed a proposal of potential exciters of hydration on the basis of literature and according to the results of the research at the institute of THD. Next is proposed the methodological concept of the work. Testing of the monitored technological features follows. The study of the hydration process was recorded using XRD analysis and thermal analysis. Evaluation of the results was implemented by the mutual comparing of prepared recipes.
4

Rychlovazný silniční cement / Quick Setting Road Cement

Coufal, Daniel January 2020 (has links)
The thesis deals with the study of magnesium oxide burned by various burning regimes and his possibilities of its usage as potential expansion additive. The theoretical part of the thesis concerns mainly the volume changes and how they can be influenced. The practical part focuses on monitoring morphology, phase composition and the hydration process of magnesium oxide.
5

Plazmochemické odstraňování korozních vrstev bronzu / Plasma chemical removal of bronze corrosion layers

Miková, Petra January 2019 (has links)
The thesis deal with applying low-pressure low-temperature plasma to corrosion products layers on bronze. Layers of corrosion products on samples were artificially prepared. As a result, they had the same composition and could be irreversibly destroyed during experiments, which would not be possible with real archeological artifacts. Bronze, copper and tin alloy, samples were cut with respect to the size of the plasma-chemical device. XRF was used to determine the bronze composition. Before being corroded by the active medium, each sample was washed with ethanol and dried with a hot air stream. Until now, the procedure was the same for all samples. During formation of corrosion products layers, two factors have to be taken into account: the time consumption and the corrosiveness of the active environment. By focusing on one or the other factor, several groups of samples with differently degraded surfaces were created. The fastest way was to place samples in a corrosion chamber where sodium chloride solution was applied at the elevated temperature. The samples were corroded within a few days there. Longer, but in terms of corrosion products layers compactness better way proved procedure where the samples were sealed in the desiccator. At the desiccator bottom the Petri dish with an inorganic acid was placed, in our case, with hydrochloric acid inside. This method corroded the samples within one month. The longest but the most closed to the real live method was the burial of samples into soil or compost. However, this method corroded the samples within two years. Final step after the samples were removed from any corrosive environment, were dried under low pressure and were placed in a barrier film made bag together with moisture and oxygen absorbers. So prepared samples with layers of corrosion products have been treated in a low-pressure low-temperature plasma. Treatment was carried out in the apparatus which is based on the reactor: cylinder of quartz glass having a diameter of 100 mm and a length of 900 mm. The reactor was supplied with a working gas or a mixture of working gases with a total flow rate of 50 sccm. In our case, one is pure hydrogen or a combination with argon. A rotary oil pump was used to provide vacuum. The reactor base pressure was 10 Pa before treatment, while during the treatment it was 150 Pa. High-frequency generator (13.54 MHz) was used for supply the system with energy through two copper electrodes located outside the reactor. According to the energy delivery method, the treatment was carried out in a continuous or pulse mode. The sample temperature was monitored during the experiment and were evaluated the emission spectra from OES. The sample temperature was one of the key factors. The measurement was first done with a thermocouple, later switched to a thermocouple with optical data transmission. A safe temperature was set and then the whole process was controlled through it. In addition, the effect of the energy delivery method, value of the delivered power, sample size, presence of incrusted layers and composition of working gas were studied. After application of plasma, samples were analyzed by SEM – EDX and XRD. After the evaluation of the acquired knowledge and experience, a real artifact - a bronze chisel from the site of Boskovice - was treated. This documentation lacked the artifact, so it could be used to verify the lessons learned about plasma chemical reduction.
6

Kostní implantáty na bázi železa / Bones implants based on Fe

Hávová, Mariana January 2016 (has links)
This thesis refers to Fe-based biodegradable materials and their potencial aplications in medicine, especially as temporary bone implants. This work generaly summaries aplications of biomaterial in medicine with more interest kept on biodegradable materials and their in-vivo corrosion. The experimental part refers to conduction of porous Fe-based materials with silica addition. The structure of prepared specimens is identified by EDX and XRD analysis. The imersion test and electrochemical studies were conducted to observe corrosion behaviour with respect to different concentration of silica. Potenciodynamic curves were obtained to determine corrosion potencial and corrosion current density of prepared samples.
7

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
8

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
9

Aplikace analytických metod využívajících RTG záření v oblasti analýz stavebních materiálů / The application of analytical methods based on X-rays in analysis of building materials

Klekner, Martin January 2012 (has links)
Master’s thesis mainly deals with XRF analysis of building materials. Comprehensively analyzes the factors that limit the accuracy of the obtained data, creates a new methodology for the rapid analysis of silicate materials by XRF instrument and discusses the influences determining the reproducibility of the results of XRF analysis.
10

Sledování melitelnosti slínkových minerálů / Study of the grindability of the clinker minerals

Červinková, Lenka January 2017 (has links)
The thesis deals with the influence of free various technological grinding processes of pure clinker minerals. The goals is to synthetically prepare pure clinker minerals and monitor the effect of the duration of the grinding process and monitor the impact of grinding technology on their crystallinity. A laser granulometry and XRD analysis are used for evaluation.

Page generated in 0.0633 seconds