• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN EVALUATION OF THE INFLUENCE OF ADJACENT ACTIVITIES ON THE AIR LEAD CONCENTRATION DURING LEAD ABATEMENT TASKS AND AN EVALUATION OF LEVELS OF LEAD IN PAINT IN EXISTING HOUSING AND IN NEW PAINTS IN SINGAPORE

CHEN, CHIN KWANG January 2004 (has links)
No description available.
2

Identifikace a původ drahých kamenů v insignii Univerzity Karlovy v Praze, Přírodovědecké fakulty / The Identification and the Origin of the Gemstones Adorning the Insignia of the Charles University in Prague , the Faculty of Science

Petrová, Zdeňka January 2010 (has links)
The issue of a sceptre for the newly founded Faculty of Science was first discussed on the meeting of Faculty professors on the 25th November 1921, more than a year after the separation of the Faculty of Science from the Faculty of Arts. The commission elected from among the professors proposed a motion that the new Faculty sceptre should resemble the sceptre of the parental Faculty of Arts. Through a mediation of the Ministry of Education and National Enlightment the design of the new sceptre was ordered from the Academy of Arts, Architecture and Design and it was elaborated by prof. Jaroslav Horejc. However, in January 1923, his design was rejected, because it didn't meet the requirements of the professors' conservative approach. When prof. Horejc refused to make a modified copy of the sceptre of the Faculty of Arts, the professors addressed Tengler, the goldsmith who had made the sceptres of other faculties and of the rector in previous years. Alois Tengler was willing to make a modified copy of the sceptre of Faculty of Arts, but he also proposed a new design (with estimated price of 20 000 K), which the professors found more suitable and subsequently this design was adopted. Tengler committed himself to manufacture the sceptre by the 15th November 1924 and to incorporate any additional design...
3

Comparative Study of the Chemostratigraphic and Petrophysical characteristics of Wells A-A1, A-L1, A-U1 and A-I1 in the Orange Basin, South Atlantic Margin, Offshore South Africa.

Bailey, Carlynne. January 2009 (has links)
<p>Many hydrocarbon reservoirs are situated in barren sequences that display poor stratigraphic control. Correlation between the wells can become extremely difficult and traditional correlation techniques can prove to be inadequate. Past studies have shown that trace and major element concentrations can be used as a correlation tool. This practice of using geochemical fingerprints to characterize between wells is called Chemostratigraphic analysis. (Pearce et al, 1999) Chemostratigraphy has been recognized as a very important correlation technique as it can be used for rocks of any age, in any geological setting as well as sequences that are traditionally defined as barren. Chemostratigraphic analyses can be used as a means of getting rid of ambiguities within data produced by traditional correlation methods such as Biostratigraphy, Lithostratigraphy and Geophysical Logging. In areas where stratigraphic data is not available it can be used to construct correlation frameworks for the sequences found in the area. The motivation behind this study is that the research is not only worthy of academic investigation, but can also provide the industry with new insights into areas that were previously misunderstood because traditional correlation methods were not adequate. The study area, the Orange basin, is located offshore South Africa and is largely underexplored. The basin, that hosts two gas field namely the Ibhubesi and the Kudu gas fields, has large potential but in the past has not been given due attention with only 34 wells being drilled in the area. The Orange basin has recently been the topic of investigation because of the belief that it may be hosts to more hydrocarbons. This study will utilise Chemostratigraphy to attempt to provide geological information on this relatively under-explored basin. The aim of this research study is to produce a chemostratigraphic framework -scheme for the Orange Basin in order to facilitate reservoir scale interwell correlation. The Objectives of this research study will be to identify chemostratigraphic units or indices, to prove the adequate use of chemostratigraphy as an independent correlation technique and to integrate the chemostratigraphy and petrophysical characteristics of the four wells to facilitate lithological identification.</p>
4

Comparative Study of the Chemostratigraphic and Petrophysical characteristics of Wells A-A1, A-L1, A-U1 and A-I1 in the Orange Basin, South Atlantic Margin, Offshore South Africa.

Bailey, Carlynne. January 2009 (has links)
<p>Many hydrocarbon reservoirs are situated in barren sequences that display poor stratigraphic control. Correlation between the wells can become extremely difficult and traditional correlation techniques can prove to be inadequate. Past studies have shown that trace and major element concentrations can be used as a correlation tool. This practice of using geochemical fingerprints to characterize between wells is called Chemostratigraphic analysis. (Pearce et al, 1999) Chemostratigraphy has been recognized as a very important correlation technique as it can be used for rocks of any age, in any geological setting as well as sequences that are traditionally defined as barren. Chemostratigraphic analyses can be used as a means of getting rid of ambiguities within data produced by traditional correlation methods such as Biostratigraphy, Lithostratigraphy and Geophysical Logging. In areas where stratigraphic data is not available it can be used to construct correlation frameworks for the sequences found in the area. The motivation behind this study is that the research is not only worthy of academic investigation, but can also provide the industry with new insights into areas that were previously misunderstood because traditional correlation methods were not adequate. The study area, the Orange basin, is located offshore South Africa and is largely underexplored. The basin, that hosts two gas field namely the Ibhubesi and the Kudu gas fields, has large potential but in the past has not been given due attention with only 34 wells being drilled in the area. The Orange basin has recently been the topic of investigation because of the belief that it may be hosts to more hydrocarbons. This study will utilise Chemostratigraphy to attempt to provide geological information on this relatively under-explored basin. The aim of this research study is to produce a chemostratigraphic framework -scheme for the Orange Basin in order to facilitate reservoir scale interwell correlation. The Objectives of this research study will be to identify chemostratigraphic units or indices, to prove the adequate use of chemostratigraphy as an independent correlation technique and to integrate the chemostratigraphy and petrophysical characteristics of the four wells to facilitate lithological identification.</p>
5

Comparative study of the chemostratigraphic and petrophysical characteristics of wells A-A1, A-L1, A-U1 and A-I1 in the Orange Basin, South Atlantic Margin, Offshore South Africa

Bailey, Carlynne January 2009 (has links)
Magister Scientiae - MSc / Many hydrocarbon reservoirs are situated in barren sequences that display poor stratigraphic control. Correlation between the wells can become extremely difficult and traditional correlation techniques can prove to be inadequate. Past studies have shown that trace and major element concentrations can be used as a correlation tool. This practice of using geochemical fingerprints to characterize between wells is called Chemostratigraphic analysis. (Pearce et al, 1999) Chemostratigraphy has been recognized as a very important correlation technique as it can be used for rocks of any age, in any geological setting as well as sequences that are traditionally defined as barren. Chemostratigraphic analyses can be used as a means of getting rid of ambiguities within data produced by traditional correlation methods such as Biostratigraphy, Lithostratigraphy and Geophysical Logging. In areas where stratigraphic data is not available it can be used to construct correlation frameworks for the sequences found in the area. The motivation behind this study is that the research is not only worthy of academic investigation, but can also provide the industry with new insights into areas that were previously misunderstood because traditional correlation methods were not adequate. The study area, the Orange basin, is located offshore South Africa and is largely underexplored. The basin, that hosts two gas field namely the Ibhubesi and the Kudu gas fields, has large potential but in the past has not been given due attention with only 34 wells being drilled in the area. The Orange basin has recently been the topic of investigation because of the belief that it may be hosts to more hydrocarbons. This study will utilise Chemostratigraphy to attempt to provide geological information on this relatively under-explored basin. The aim of this research study is to produce a chemostratigraphic framework -scheme for the Orange Basin in order to facilitate reservoir scale interwell correlation. The Objectives of this research study will be to identify chemostratigraphic units or indices, to prove the adequate use of chemostratigraphy as an independent correlation technique and to integrate the chemostratigraphy and petrophysical characteristics of the four wells to facilitate lithological identification. / South Africa
6

Comparative Study of the Chemostratigraphic and Petrophysical characteristics of Wells A-Al, A-Ll, A-Ul and A-Il in the Orange Basin, South Atlantic Margin, Offshore South Africa.

Bailey, Carlynne January 2009 (has links)
>Magister Scientiae - MSc / Many hydrocarbon reservoirs are situated in barren sequences that display poor stratigraphic control. Correlation between the wells can become extremely difficult and traditional correlation techniques can prove to be inadequate. Past studies have shown that trace and major element concentrations can be used as a correlation tool. This practice of using geochemical fingerprints to characterize between wells is called Chemostratigraphic analysis. (Pearce et al, 1999) Chemostratigraphy has been recognized as a very important correlation technique as it can be used for rocks of any age, in any geological setting as well as sequences that are traditionally defined as barren. Chemostratigraphic analyses can be used as a means of getting rid of ambiguities within data produced by traditional correlation methods such as Biostratigraphy, Lithostratigraphy and Geophysical Logging. In areas where stratigraphic data is not available it can be used to construct correlation frameworks for the sequences found in the area. The motivation behind this study is that the research is not only worthy of academic investigation, but can also provide the industry with new insights into areas that were previously misunderstood because traditional correlation methods were not adequate. The study area, the Orange basin, is located offshore South Africa and is largely underexplored. The basin, that hosts two gas field namely the Ibhubesi and the Kudu gas fields, has large potential but in the past has not been given due attention with only 34 wells being drilled in the area. The Orange basin has recently been the topic of investigation because of the belief that it may be hosts to more hydrocarbons. This study will utilise Chemostratigraphy to attempt to provide geological information on this relatively under-explored basin. The aim of this research study is to produce a chemostratigraphic framework -scheme for the Orange Basin in order to facilitate reservoir scale interwell correlation. The Objectives of this research study will be to identify chemostratigraphic units or indices, to prove the adequate use of chemostratigraphy as an independent correlation technique and to integrate the chemostratigraphy and petrophysical characteristics of the four wells to facilitate lithological identification. Element distribution Analysis was done on the data. This brought to the fore. the dominance of Si02 across the samples for the four wells. Ah03 concentrations were relatively high across the wells and were indicative of the clay rich nature of the samples. This also indicated that the samples were relatively immature. Principal Component Analysis (PCA) plots were constructed for the purpose of identifying diametrical relationships between the elements or element clusters. These diametric relationships were in turn used to calculate the geochemical indices. The relative positions of the elements on the PCA plot highlighted the presence of alternating units of sandstone, feldspathic sandstone, calcareous clays and non calcareous clays within the samples. The PCA plots displayed diametric relationships between Si02 and the carbonate mineral clusters, Si02 and the clay mineral clusters, Nd and V, Nb nad Ni, Zr and Co, Nb and Zn. Si02 and Co, Y and Pb, Zr and Sr, and lastly Nb and Ra / Downhole plots were constructed to illustrate recognizable trends in the PCA plot and to relate this to the occurrence of various lithologies in the wells. Based on the element distribution patterns, PCA plots and Major and Trace element downhole profiles geochemical indices were calculated. They are grouped into three clusters, ratios indicative of the presence of clean sandstones (High Si02/Ah03, Si02/Co, Zr/Co, Zr/Sr, YlPb and low Nd/V values); ratios indicative of the presence of clays (Low Si02/Ah03, Fe203/Ah03, Si02/Co, Zr/Co, YlPb and high Rb/Zn values); thirdly those indicative of the presence of feldspathic sandstones (High Na201K20) and lastly those indicative of the presence of carbonates (low Zr/Sr). Using the geochemical Indices six units were identified in Well A_AI, nine in A-II and 8 iin Well A-UI and A-LI. Four units (A-D) were found to correlate across the wells. I Well log interpretation for the Wells A-AI, A-II, A-Lland A-UI started with a general overview of the log responses. The log responses for the four wells highlighted the presence of sandstones, argillaceous sandstones, shales and shale components. Geophysical units were identified using the logs responses. Six units were identified in Well A-AI, nine in Well A-II and eight in Wells A-LI and A-UI. These units coincide with the units identified using Chemostratigraphic analysis. Neutron - Density cross plots were constructed for each unit across the four wells. The plotting of the points on the Neutron - Density cross plots for the wells A-AI, A-II, A-LI and A-UI indicated the presence of sandstones, shales or greywackes and either limestones and dolomites but from the geochemistry it is known that neither limestone nor dolomite is present in the wells and it was thus inferred that the points plotting between the limestone and dolomite lithology curves indicated the presence of calcareous shales. M-N plots were constructed for each unit. The patterns exhibited by the points on the M-N plots for the wells was indicative of the presence calcareous clays, sandstones, greywacke and shales. The Chemostratigraphic and Petrophysical results produced accurate and comparable results, however, the Chemostratigraphic analysis provided finer details regarding the lithology of the units. Based on the well log responses no distinction could be made between highly feldspathic sandstone, arkosic and argillaceous sandstone, while these distinctions were possible when analyzing the samples using Chemostratigraphy. The geochemistry was capable of providing signatures in areas where the wireline tools malfunctioned. The logs, on the other hand, sheds light on properties such as porosity and permeability of the rocks which cannot be obtained accurately from the geochemistry. When comparing the correlation capabilities of these two techniques, the one based on geochemical signatures and the other based on the responses obtained from wireline tools, it is important to acknowledge that both these techniques has strengths and weaknesses. The best of both these techniques can only be fully utilised when either technique is used in conjunction with other techniques. With respect to the Orange Basin, located offshore South Africa, it can be concluded that the dominant lithologies in the basin are sandstones, argillaceous sandstones, shales, feldspathic and arkosic sandstones and clays. In terms of petroleum prospectivity the sandstones in Wells A-AI, A-II, A-UI and A-LI could possibly be considered to be reservoirs and the shales could be considered to be seals or source rocks, depending on the organic matter content. On the down side, the sandstones display relatively poor permeabilities and the porosities are variable. The density logs indicate that the sandstones are highly compacted and that could be an indication of poor porosities but more research needs to be done. Another factor highlighted from the research is the presence of alternating lithologies. This means that the reservoirs are compartmentalised and that the area has a high degree of heterogeneity.
7

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
8

Production and characterization of biofuel from waste cooking

Emeji, Ikenna Chibuzor 08 1900 (has links)
At present, the use of other sources of energy other than energy source from crude oil has accelerated. This is due to limited resources of fossil fuel, increasing prices of crude oil and environmental concerns. Alternative fuels such as biofuel are becoming more important because it can serve as a replacement for petroleum diesel due to its comparable fuel properties and cleaner emission. For use in a standard diesel engine, biodiesel can be blended (mixed) with petroleum diesel at any concentration. In this study, transesterification of waste cooking oil with methanol was catalyzed by heterogeneous catalyst TiO2-supported-MgO and the biodiesel produced was characterised. Waste cooking oil (WCO) was used because it is regarded as one of the cheapest feedstock for biodiesel production in that most oils from oil crops are used as food. Waste cooking oil is available in vast amounts each day in every restaurants and fast food outlets worldwide. The waste cooking oil used in this study was laboratory prepared by the addition of 5 wt. % of oleic acid into 95 wt. % of soybeans oil.10 wt. % of titanium-supported-magnesium oxide catalyst (MgO/TiO2) used was prepared by incipient wetness impregnation and characterized using XRF, BET and XRD. These materials were tested with the catalyst for the conversion of waste vegetable oil to biodiesel in presence of methanol and hexane co-solvent. Methanol to oil mole ratio of 18:1 was employed in the transesterification process. When hexane was used as cosolvent, methanol to oil mole ratio of 18:1 and methanol to hexane mole ratio of 1:1 was used. The effects of reaction time, reaction temperature and hexane co-solvent on the waste vegetable oil conversion has been established. The 1HNMR analysis was used to estimate the structure of FAME produced. It was observed that the oil conversion increases with the increased reaction time, reaction temperature and use of hexane as co-solvent. / Chemical Engineering / M. Tech. (Chemical Engineering)
9

Aplikace analytických metod využívajících RTG záření v oblasti analýz stavebních materiálů / The application of analytical methods based on X-rays in analysis of building materials

Klekner, Martin January 2012 (has links)
Master’s thesis mainly deals with XRF analysis of building materials. Comprehensively analyzes the factors that limit the accuracy of the obtained data, creates a new methodology for the rapid analysis of silicate materials by XRF instrument and discusses the influences determining the reproducibility of the results of XRF analysis.

Page generated in 0.033 seconds