Spelling suggestions: "subject:"xylans"" "subject:"dylans""
1 |
Thermoplastic xylan derivatives and related blends /Rauschenberg, Nancy Carol, January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 81-84). Also available via the Internet.
|
2 |
Genetic improvement of xylanase.January 2004 (has links)
Yuan Zhao. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 89-96). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.iv / Declaration --- p.v / Abbreviations --- p.vi / Table of Contents --- p.viii / List of Tables --- p.xii / List of Figures --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Lignocelluloses --- p.2 / Chapter 1.1.1 --- component of lignocellulose --- p.2 / Chapter 1.1.2 --- Xylans --- p.3 / Chapter 1.2 --- Degradation of lignocellulose --- p.9 / Chapter 1.3 --- "Endo-β-1,4- xylanase" --- p.12 / Chapter 1.3.1 --- Structure of xylanase --- p.12 / Chapter 1.3.2 --- Mode of action --- p.17 / Chapter 1.3.3 --- Appications of xylanase --- p.20 / Chapter 1.4 --- Aims of my study --- p.24 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Cloning of xylanase genes --- p.26 / Chapter 2.1.1 --- Materials --- p.26 / Chapter 2.1.1.1 --- Bacterial and fungal strains --- p.26 / Chapter 2.1.1.2 --- Growth media --- p.26 / Chapter 2.1.1.3 --- Vector --- p.26 / Chapter 2.1.1.4 --- Reagents for agarose gel electrophoresis --- p.27 / Chapter 2.1.1.5 --- Reagents for preparation of competent cells --- p.27 / Chapter 2.1.2 --- Methods --- p.29 / Chapter 2.1.2.1 --- Isolation of chromosomal DNA --- p.29 / Chapter 2.1.2.2 --- Amplification of exons of xylanase genes --- p.29 / Chapter 2.1.2.3 --- Agarose gel electrophoresis of DNA --- p.37 / Chapter 2.1.2.4 --- DNA recovery from agarose gel --- p.37 / Chapter 2.1.2.5 --- Assemble and amplify the full length genes --- p.38 / Chapter 2.1.2.6 --- Restriction endonuclease digestion --- p.39 / Chapter 2.1.2.7 --- Ligation of purified DNA fragment into vector --- p.39 / Chapter 2.1.2.8 --- Transformation --- p.40 / Chapter 2.1.2.9 --- Methods for making competent cells --- p.40 / Chapter 2.1.2.10 --- Plasmid DNA preparation --- p.40 / Chapter 2.1.2.11 --- DNA sequencing --- p.41 / Chapter 2.2 --- Mutagenesis of xylanase --- p.43 / Chapter 2.2.1 --- Amplification of xylanases genes --- p.47 / Chapter 2.2.2 --- DNA random mutagenesis --- p.48 / Chapter 2.2.2.1 --- DNase digestion --- p.48 / Chapter 2.2.2.2 --- Reassembly of DNA fragments --- p.48 / Chapter 2.2.2.3 --- Amplification of full-length genes --- p.48 / Chapter 2.2.2.4 --- Construction of library --- p.49 / Chapter 2.2.3 --- Screening of mutants --- p.49 / Chapter 2.2.3.1 --- Preparation of RBB-xylan --- p.49 / Chapter 2.2.3.2 --- Plate assay for screening of mutants --- p.50 / Chapter 2.3 --- Expression of xylanase genes --- p.51 / Chapter 2.4 --- Enzyme assays --- p.52 / Chapter 2.4.1 --- Xylanase assay with RBB-xylan --- p.52 / Chapter 2.4.2 --- Xylanase assay with DNS-method --- p.52 / Chapter 2.4.2.1 --- Reagents --- p.53 / Chapter 2.4.2.2 --- Xylose standard curve --- p.53 / Chapter 2.4.2. 3 --- Activity assay --- p.54 / Chapter 2.4.2. 4 --- Thermostability assay --- p.54 / Chapter Chapter 3 --- Results --- p.55 / Chapter 3.1 --- Cloning of xylanase genes --- p.56 / Chapter 3.2 --- Mutagenesis of xylanase --- p.59 / Chapter 3.2.1 --- DNA random mutagenesis --- p.59 / Chapter 3.2.2 --- Screening of mutants --- p.67 / Chapter 3.3 --- Enzyme assays --- p.69 / Chapter Chapter 4 --- Discussions --- p.76 / Chapter 4.1 --- Gene shuffling --- p.77 / Chapter 4.2 --- Screening method and activity assay --- p.78 / Chapter 4.3 --- Sequence analysis --- p.80 / Chapter 4.4 --- Future work --- p.88 / Bibliography --- p.89
|
3 |
Breeding of better [beta]-xylulokinase. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
Bu Su. / "July 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 139-158). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
4 |
Breeding of better [beta]-D-xylosidase. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 2003 (has links)
Peijun Zuo. / "November 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 188-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
5 |
Glucurono(Arabino)Xylan biosynthesis in wheat /Zeng, Wei. January 2009 (has links)
Thesis (Ph.D.)--Ohio University, August, 2009. / Release of full electronic text on OhioLINK has been delayed until September 1, 2012. Includes bibliographical references (leaves 111-128)
|
6 |
Glucurono(Arabino)Xylan biosynthesis in wheatZeng, Wei. January 2009 (has links)
Thesis (Ph.D.)--Ohio University, August, 2009. / Title from PDF t.p. Release of full electronic text on OhioLINK has been delayed until September 1, 2012. Includes bibliographical references (leaves 111-128)
|
7 |
Engineering of Pichia stipitis for enhanced xylan utilizationDen Haan, Riaan 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: Plant biomass, the most abundant renewable resource in nature, consists of matrices of
mainly lignin, cellulose, hemicellulose as well as inorganic components. Xylan, the
major hemicellulose component in plant cell walls, is the most abundant polysaccharide
after cellulose. This makes the main constituent sugar of xylan, D-xylose, the second
most abundant renewable monosaccharide in nature. Very few hemicelluloses are either
homopolymeric or entirely linear. Therefore, the variety of enzymes involved in their
hydrolysis is more complex than the enzyme group responsible for the hydrolysis of
cellulose. Although the ability to degrade xylan is common among bacteria and
filamentous fungi, this trait is relatively rare among yeasts. However, some strains of the
yeast Pichia stipitis are, amongst others, able to degrade xylan. As P. stipitis is also one
of the best D-xylose fermenting yeasts thus far described, this yeast has the potential of
fermenting polymeric xylan directly to ethanol. However, it was shown that the natural
xylanolytic ability of this yeast is very weak.
In this study, xylanolytic genes were expressed in P. stipitis to test the ability of the yeast
to produce heterologous proteins, and to determine the enhancement of xylan utilisation
by the recombinant strain. The native xylose reductase gene (XYLl) and transketolase
gene (TKL) and the heterologous Saccharomyces cerevisiae phosphoglycerate kinase
(PGKl) gene promoter were cloned into P. stipitis transformation vectors and used to
express the Trichoderma reesei ~-xylanase encoding gene (xyn2) as reporter gene. It was
shown that the XYLl promoter was induced in the presence of D-xylose and that the TKL
promoter was constitutively expressed. The PGKl promoter of S. cerevisiae did not
function in P. stipitis .
When the T reesei xyn2 gene and the Aspergillus kawachii ~-xylanase encoding gene
(xynC) were expressed under control of the XYLl promoter, extracellular ~-xylanase
activity of up to 136 nkat/ml and 171 nkatlml was observed, respectively. This activity
declined over time due to the presence of extracellular proteases, secreted by P. stipitis.
Growing the cultures in a fermentor and controlling the pH level to pH 6 did not alleviate the reduction of heterologous l3-xylanase activity. When the Aspergillus niger
l3-xylosidase encoding gene (xlnD) was expressed as a fusion gene (designated XL02)
with the S. cerevisiae mating factor secretion signal (MFal) under control of the
P. stipitis TKL promoter, extracellular l3-xylosidase activity of 0.132 nkatlml was
observed. Co-expression of the xyn2 and XL02 genes led to B-xylanase and l3-xylosidase
activities of 128 nkatlml and 0.113 nkat/ml, respectively. Co-expression of the xynC and
XL02 genes led to l3-xylanase and l3-xylosidase activities of 165 nkat/ml and 0.124
nkatlml, respectively.
The expression of the fungal xylanolytic genes in P. stipitis also led to an increased
biomass yield when the recombinant strains were cultured on birchwood xylan as sole
carbon source. The strain co-expressing the A. kawachii l3-xylanase and A. niger
l3-xylosidase encoding genes was the most successful, yielding a 3.2-fold higher biomass
level than the control strain. Biomass levels of the recombinant strains were further
improved on average by 85% by growing them in a fermentor under conditions of high
oxygenation. The strains were also tested for direct conversion of xylan to ethanol and
the strain co-expressing the A. kawachii l3-xylanase and A. niger l3-xylosidase encoding
genes produced 1.35 giL ethanol, which represents a 3.6-fold increase in ethanol yield
over the reference strain. These strains represent a step towards the efficient degradation
and utilisation of hemicellulosic materials by ethanol-producing yeasts. / AFRIKAANSE OPSOMMING: Plant biomassa, die volopste hernubare koolstotbron in die natuur, bestaan uit matrikse
van lignien, sellulose en hemisellulose. Xilaan, die hoof hemisellulose komponent in
plantselwande, is na sellulose die volopste polisakkaried. Gevolglik is die hoof
suikerkomponent van xilaan, naamlik D-xilose, die tweede volopste hernubare
monosakkaried in die natuur. Baie min hemisellulose molekules is homopolimere of
heeltemal linieêr. Daarom is die ensieme betrokke by die atbraak van hemiselluloses
meer kompleks as die ensieme betrokke by die atbraak van sellulose. Bakterieë en
filamentagtige fungi wat oor die vermoë om xilaan af te breek beskik, kom wydversprei
voor maar relatief min giste kan xilaan benut. Sommige rasse van die gisspesie Pichia
stipitis het egter beperkte vermoë om xilaan af te breek. P. stipitis is ook een van die
beste D-xilose fermenterende giste wat tot dusver beskryf is en het dus die potensiaalom
etanol vanafpolimeriese xilaan te produseer.
In hierdie studie is gene wat kodeer vir xilaanatbrekende ensieme in P. stipitis uitgedruk
om die vermoë van die gis as heteroloë uitdrukking sisteem te evalueer. Verder is die
effek van die heteroloë xilaanatbrekende ensieme tydens groei op xilaan as enigste
koolstotbron getoets. Die promoters van die xilosereduktasegeen (XYLl), die
transketolasegeen (TKL) van P. stipitis en die fosfogliseraatkinasegeen (PGKl) van
Saccharomyces cerevisiae is in P. stipitis transformasie vektore gekloneer en gebruik om
die Trichoderma reesei ~-xilanasegeen (xyn2) as verklikkergeen uit te druk. Dit het
bewys dat die XYLI promotor induseerbaar is in die teenwoordigheid van D-xilose terwyl
die TKL geen konstant uitgedruk was. Die PGKI promotor van S. cerevisiae was nie
funksioneel in P. stipitis nie.
Ekstrasellulêre ~-xilanase aktiwiteit van onderskeidelik 136 nkatlml en 171 nkatlml kon
waargeneem word wanneer die T reesei xyn2 geen of die Aspergillus kawachii
~-xilanasegeen (xynC) onder beheer van die XYLI promotor uitgedruk is. Hierdie
aktiwiteit het afgeneem na gelang van tyd a.g.v. die teenwoordigheid van ekstrasellulêre
proteases wat deur P. stipitis uitgeskei word. Die afname van ekstrasellulêre ~-xilanase aktiwiteit kon nie voorkom word deur die kulture in 'n fermentor te groei en die pH vlak
tot pH 6 te beheer nie. Tydens uitdrukking van die Aspergillus niger ~-xilosidase geen
(xlnD) as 'n fusiegeen (genoem XL02) met die paringsfaktor sekresiesein (MFal) van
S. cerevisiae onder transkripsionele beheer van die P. stipitis TKL promotor, kon
ekstrasellulêre ~-xilosidase aktiwiteit van 0.132 nkatlml waargeneem word.
Gesamentlike uitdrukking van die xyn2 en XL02 gene het gelei tot ~-xilanase en
~-xilosidase aktiwiteite van 128 nkatlml and 0.113 nkat/ml, onderskeidelik.
Gesamentlike uitdrukking van die xynC en XL02 gene het gelei tot ~-xilanase en
~-xilosidase aktiwiteite van 165 nkatlml and 0.124 nkatlml, onderskeidelik.
Die uitdrukking van xilaanatbrekende ensieme III P. stipitis het verhoogbe
biomassaproduksie teweeg gebring wanneer die rekombinante gisrasse op birchwood
xilaan as enigste koolstotbron gegroei het. Die rekombinante ras wat die A. kawachii
~-xilanasegeen en die A. niger ~-xilosidase geen gesamentlik uitdruk, was die mees
suksesvolle ras en het 3.2-voudig hoër biomassa as die kontrole ras opgelewer. Die
biomassa van die rekombinante rasse tydens groei op xilaan as enigste koolstotbron kon
gemiddeld met 85% verhoog word deur die giste onder hoë suurstotkonsentrase in 'n
fermentor te kweek. Die rekombinante rasse is verder ook getoets vir hul vermoë om
xilaan direk tot etanol om te skakel. Die rekombinante ras wat die A. kawachii
~-xilanasegeen en die A. niger ~-xilosidase geen gesamentlik uitgedruk het, het 'n 3.6-
voudige verhoging in etanolproduksie getoon en 1.35 gIL ethanol gelewer. Hierdie
rekombinante gisrasse verteenwoordig 'n stap nader aan die doeltreffende atbraak en
benutting van hemisellulose deur etanolproduserende giste.
|
8 |
The behavior of 4-O-methylglucoxylan in hot alkali.Ross, Richard John 01 January 1964 (has links)
No description available.
|
9 |
The preparation, characterization, and hydrolysis of crystalline and amorphous xylan.Yundt, Albert Perdue 06 1900 (has links)
No description available.
|
10 |
Genetic engineering of the yeast Saccharomyces cerevisiae to degrade xylanLa Grange, Daniel Coenrad 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 1999. / ENGLISH ABSTRACT: Hemicellulose, consisting mainly of xylan, ranks after cellulose, as the most abundant group of renewable polysaccharides in agricultural biomass. Xylan is a complex polymer consisting of a β D 1,4 linked xylopyranoside backbone, which may contain substituents. Enzymatic hydrolysis of xylan involves the action of a number of different hydrolytic enzymes.
The yeast Saccharomyces cerevisiae has been used extensively in traditional food and beverage processes (baking, brewing and winemaking), as well as for the production of ethanol (potable alcohol and fuel extenders) and single-cell protein (protein supplements in food and animal feed). S. cerevisiae therefore has complete GRAS (Generally Regarded as Safe) status. However, the yeast S. cerevisiae can neither degrade nor utilize complex polysaccharides, including xylan. Through recombinant DNA technology, S. cerevisiae can be complemented by heterologous polysaccharase-encoding genes, thereby broadening its substrate range and facilitating a direct bioconversion of polysaccharides to valuable commodities, such as potable ethanol, protein supplements and industrial enzymes.
In this study, the successful expression and co-expression of a β xylanase gene (Trichoderma reesei xyn2) and two β xylosidase genes (Bacillus pumilus xynB and A. niger xlnD) in S. cerevisiae, is described. Expression of these genes was obtained with the aid of multi-copy episomal yeast plasmids pJC1, pDLG1, pDLG4 and pRLR1. These plasmids contain either the derepressible alcohol dehydrogenase 2 (ADH2) or the constitutive phosphoglycerate kinase 1 (PGK1) promoter and terminator sequences.
The enhanced production of recombinant enzymes by S. cerevisiae in a rich medium, without the risk of losing the episomal vector, was obtained by disrupting the uracil phosphoribosyltransferase (FUR1) gene in the plasmid-containing S. cerevisiae strains. This step ensured auto-selection of the URA3-bearing expression plasmids in rich growth medium.
High level expression of the T. reesei β xylanase gene in S. cerevisiae enabled the yeast to degrade xylan to short xylo-oligosaccharides, but very little monomeric D xylose was formed. Both β xylosidase genes enabled S. cerevisiae to degrade short xylo-oligosaccharides like xylobiose and xylotriose. Co-expression of the β xylanase and the B. pumilus β xylosidase led to a small increase in the β xylanase activity, but a substantial decrease in the amount of β xylosidase activity. This recombinant yeast strain was unable to degrade xylan to D xylose. Expression of the T. reesei β xylanase with the A. niger β xylosidase gene enabled this strain to completely degrade xylan to its monomeric constituents, D xylose. / AFRIKAANSE OPSOMMING: Hemisellulose, wat hoofsaaklik uit xilaan bestaan, is ná sellulose, die volopste
hernubare polisakkaried in landbouafval. Xilaan is 'n komplekse polimeer wat
bestaan uit 'n β-D-1,4-gekoppelde xilopiranoseruggraat wat in sommige gevalle ook
sykettings bevat. Ensimatiese afbraak van xilaan benodig die werking van hele
aantal hidrolitiese ensieme.
Die gis Saccharomyces cerevisiae word al vir baie jare in die voedsel- en
drankbedryf (bak van brood en die maak van bier en wyn), asook vir die produksie
van etanol (vir menslik gebruik en as brandstof aanvuller) en enkelselproteïene
(proteïenaanvulling vir mens en dier) gebruik en het daarom volledige GRAS
(Generally Regarded As Safe) status. Ongelukkig kan S. cerevisiae nie komplekse
polisakkariede, xilaan ingesluit, afbreek of as koolstofbron benut nie. Met behulp
van rekombinante-DNA-tegnologie kan S. cerevisiae gekomplementeer word met
die nodige gene wat kodeer vir polisakkariedafbrekende ensieme om sodoende die
gis in staat te stel om 'n wyer verskeidenheid van substrate af te breek en te benut.
Dit sal lei tot die direkte bio-omskakeling van polisakkariede na bruikbare produkte
soos etanol, proteïenaanvullers en ensieme vir industriële gebruik.
In hierdie proefskrif word die suksesvolle uitdrukking asook die gesamentlike
uitdrukking van 'n xilanasegeen (Trichoderma reesei xyn2) en twee
β-xilosidasegene (Bacillus pumilus xynB en A. niger xlnD) in S. cerevisiae beskryf.
Multikopie episomale plasmiede pJC1, pDLG1, pDLG4 en pRLR1 met die glukose
onderdrukbare alkoholdehidrogenase 2 (ADH2) of die konstitutiewe
fosfogliseraatkinase 1 (PGK1)- promoter en -termineerder is vir hierdie doel
gebruik.
Verhoogde produksie van die rekombinante ensieme deur S. cerevisiae in 'n ryk
medium, sonder dat die gis die episomale plasmiedvektore verloor is moontlik
gemaak deur die urasielfosforibosieltransferasegeen (FUR1) van hierdie giste te
onderbreek met behulp van die LEU2-geen. Op hierdie manier word daar outomaties vir giste wat die URA3-uitdrukkingsplasmiede bevat geselekteer, selfs
in ryk medium.
Hoë vlak uitdrukking van T. reesei se xilanasegeen het S. cerevisiae in staat gestel
om xilaan tot kort xilo-oligosakkariede af te breek, maar byna geen monomeriese
D-xilose is gevorm nie. Albei die β-xilosidasegene het die gis in staat gestel om
kort xilo-oligosakkariede soos xilobiose en xilotriose na D-xilose af te breek. Die
gesamentlike uitdrukking van die xilanasegeen en B. pumilus se β-xilosidase geen
het 'n klein toename in die xilanase-aktiwiteit tot gevolg gehad, maar 'n drastiese
afname in die β-xilosidase-aktiwiteit. Hierdie rekombinante ras kon dus nie xilaan
tot xilose afbreek nie. Uitdrukking van T. reesei se β-xilanasegeen saam met die
β-xilosidasegeen van A. niger, het S. cerevisiae in staat gestel om xilaan tot sy
monomeriese boustene, D-xilose, af te breek.
|
Page generated in 0.042 seconds