• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glia und hämatopoetische Zellen im zentralen Nervensystem

Priller, Josef 02 July 2002 (has links)
Gentherapie und Zellersatz im zentralen Nervensystem (ZNS) werden durch die Blut-Hirn-Schranke behindert, die den Übertritt von Plasmabestandteilen und Zellen in das ZNS limitiert. Genetisch modifizierte Knochenmarkszellen können jedoch ungeachtet der intakten Blut-Hirn-Schranke in das ZNS einwandern und dort zu Mikroglia differenzieren. Neurone signalisieren eine Schädigung an benachbarte Glia und rekrutieren Zellen hämatopoetischen Ursprungs gezielt an den Ort der Läsion. Aus adulten Stammzellen des Knochenmarks können schliesslich Nervenzellen entstehen, die in die komplexe Architektur des ZNS integriert werden. Die Befunde liefern neue Ansätze für die Therapie von ZNS-Erkrankungen. / Gene therapy and cell replacement strategies in the central nervous system (CNS) are hindered by the presence of the blood-brain barrier, which restricts access of serum constituents and peripheral cells to the CNS. Genetically modified bone marrow-derived cells are capable of entering the CNS in spite of the blood-brain barrier and they differentiate into microglia. Neurons signal damage to neighbouring glia and recruit cells of hematopoietic origin specifically to the sites of damage. Finally, adult bone marrow stem cells may generate new neurons which are incorporated into the complex cytoarchitecture of the CNS. The results provide a new approach for the therapy of CNS disorders.
2

Lokalisierung und Charakterisierung Foxp3+ regulatorischer T-Zellen bis zu 30 Tage nach mechanischer und ischämischer Läsion des Gehirns

Stubbe, Tobias 14 January 2014 (has links)
Nach einer Läsion im Gehirn kommt es trotz der Bildung autoreaktiver T-Zellen zu keiner autoimmunen Neuropathologie. Foxp3+ regulatorische T-Zellen (Tregs) vermitteln möglicherweise Immuntoleranz nach zerebraler Läsion. Deswegen wurde in dieser Studie die Rolle der Tregs 7, 14 und 30 Tage nach einem transienten Verschluss der mittleren Hirnarterie (MCAO), einem Modell für ischämischen Schlaganfall, und nach entorhinaler Kortexläsion (ECL) in der Maus untersucht. Durchflusszytometrisch wurde in beiden Modellen 14 und 30 Tage nach Läsion eine Akkumulation der Tregs in der ipsilateralen Hemisphäre beobachtet. Mikroskopisch wurden an der Läsion Zellkontakte der Tregs mit antigenpräsentierenden Zellen beobachtet. Weitere Experimente wurden ausschließlich nach MCAO durchgeführt. Am Tag 14 und 30 war in der ipsilateralen Hemisphäre eine Akkumulation der Mikroglia zu beobachten. Makrophagen und dendritische Zellen wurden an den Tagen 7, 14 und 30 detektiert. Am Tag 7 und 14 waren ipsilateral im Gehirn ca. 60 % der Tregs positiv für den Proliferationsmarker Ki-67. In zwei Versuchsansätzen wurden naive CD45RBhigh/CD4+ Zellen aus lymphatischen Organen von Foxp3EGFP Mäusen, mit Wildtyp T-Zellrezeptor (TCR), oder 2D2.Foxp3EGFP Mäusen, mit TCR spezifisch gegen Myelin-Oligodendrozyten-Glykoprotein, isoliert. Die Zellen wurden einen Tag vor MCAO in RAG1-/- Mäuse, welche keine adulten T- und B-Zellen besitzen, transferiert. Am Tag 14 nach MCAO war in den RAG1-/- Mäusen keine de novo Induktion Foxp3EGFP+ Tregs zu beobachten. CD25+ Tregs wurden durch die Injektion eines Antikörpers gegen CD25 depletiert, um deren Wirkung nach MCAO zu untersuchen. Nach Depletion konnte bis zu 27 Tage nach MCAO keine Veränderung des Läsionsvolumen und des Gangverhaltens beobachtet werden. In dieser Studie wurde im Gehirn eine späte Präsenz und Proliferation Foxp3+ Tregs nach Läsion nachgewiesen. Mikroglia und periphere Immunzellen sind langfristig an Immunvorgängen im lädierten Gehirn beteiligt. / After brain lesion autoreactive T cells specific against brain antigens are expanded, but no delayed autoimmune neuropathology evolves. Immune suppressive CD4+/Foxp3+ regulatory T cells (Tregs) could have an important role in maintaining immune tolerance in the lesioned brain. Therefore, this study sought to analyse the role of Tregs in mice 7, 14 and 30 days after transient middle cerebral artery occlusion (MCAO), a model for ischemic stroke, and entorhinal cortex lesion (ECL). An accumulation of Tregs was detected in the brain by flow cytometry in both models at days 14 and 30 after lesion. Using immunohistochemistry Tregs were found in close cell-cell contact with antigen presenting cells at the lesion site. Further experiments were performed solely with MCAO. On days 14 and 30 after MCAO a strong accumulation of microglia occurred in the ipsilesional hemisphere. Macrophages and dendritic cells were found ipsilesionally on days 7, 14 and 30. On days 7 and 14 about 60% of Tregs were positive for the proliferation marker Ki-67 in the lesioned hemisphere. In two different setups naïve CD45RBhigh/CD4+ cells were isolated from lymphatic organs of Foxp3EGFP mice, carrying a wild type T cell receptor (TCR), or 2D2.Foxp3EGFP mice, carrying a TCR specific for myelin oligodendrocyte glycoprotein. One day before MCAO naïve CD45RBhigh/CD4+ cells depleted of Foxp3EGFP+ Tregs were transferred into RAG1-/- mice, which lack adult B and T cells. At day 14 after MCAO no de novo generation of Foxp3EGFP+ Tregs was observed. The effects of Tregs on stroke outcome were tested by depleting CD25+/Foxp3EGFP+ Tregs with an antibody against CD25. After depletion no effects on lesion volumes and gait parameters were detected up to 27 days following MCAO. The present study demonstrates for the first time a sustained presence and proliferation of Tregs in the lesioned brain. Local microglia and peripheral immune cells are involved in long-lasting immune processes following brain lesion.
3

Zelluläre Neogenese im adulten murinen cerebralen Cortex

Ehninger, Dan-Achim 18 December 2003 (has links)
Es wurde Zellneubildung im erwachsenen cerebralen Cortex der Maus in Abhängigkeit von Umweltbedingungen und Aktivitätsgrad untersucht. Es war bekannt, dass eine reizreiche Umgebung und körperliche Aktivität die Neubildung von Nervenzellen im erwachsenen Hippokampus steigern. Als Zellproliferationsmarker wurde BrdU appliziert und BrdU-inkorporierende Zellen 1 Tag und 4 Wochen nach BrdU-Gabe unter Verwendung immunhistochemischer Methoden zur Detektion BrdU-inkorporierender Zellen in verschiedenen kortikalen Regionen und Schichten quantifiziert. Die phänotypische Charakterisierung BrdU+ Zellen wurde durch kombinierte Verwendung immunhistochemischer Methoden und konfokaler Mikroskopie vorgenommen. Die im adulten murinen cerebralen Cortex proliferierenden Zellen differenzierten weit überwiegend glial. Keine der kortikalen BrdU+ Zellen zeigte zweifelsfreie Zeichen einer neuronalen Differenzierung. Damit scheint die adulte Nervenzellneubildung unter physiologischen Bedingungen eine regionale Spezialität des Hippokampus und anderer Strukturen zu sein. Weder körperliche Aktivität (RUN) noch eine reizreiche Umgebung (ENR) führten 1 Tag oder 4 Wochen nach BrdU zu einem signifikanten Unterschied zur Kontrollgruppe (CTR), was die Anzahl BrdU+ Zellen im gesamten Cortex zusamengefaßt betrifft. Dagegen konnten die vorbeschriebenen Effekte von RUN und ENR auf hippokampale BrdU-inkorporierende Zellen repliziert werden. Dies ist ein starker Hinweis darauf, dass die Verstärkung adulter Neurogenese durch RUN und ENR im Gyrus dentatus des Hippokampus eine hippokampus-spezifische Reaktion und nicht etwa Teil einer generalisierten zentralnervösen Reaktion ist. Jedoch konnte gezeigt werden, dass körperliche Aktivität und eine reizreiche Umgebung zur lokalen Beeinflussung kortikaler Zellneubildung in bestimmten Schichten und Regionen führten. So konnten bei RUN-Tieren signifikant mehr BrdU+ Zellen in Schicht I des cingulären, motorischen und visuellen Cortex als bei CTR-Tieren gefunden werden. ENR-Tiere hatten 4 Wochen nach BrdU signifikant mehr BrdU+ Zellen in Schicht II/III des visuellen Cortex als CTR-Tiere. Die Phänotypisierung BrdU+ Zellen in diesen kortikalen Bereichen ergab, dass RUN zu einer lokalen, deutlich ausgeprägten Verstärkung der Neubildung von Mikroglia führte, während ENR tendentiell lokal kortikale Astrozytogenese verstärkte (signifikant in Schicht I des motorischen Cortex 4 Wochen nach BrdU). Damit konnte erstmals berichtet werden, dass körperliche Aktivität zelltypspezifisch die Neubildung kortikaler Mikroglia stimuliert. Dieses Ergebnis ist zunächst überraschend, da mikrogliale Proliferation und Aktivierung klassischweise im Zusammenhang mit Schadenszuständen des ZNS gesehen werden. In der Tat ist dies einer der ersten Befunde, der eine mikrogliale Reaktion mit nicht-pathologischen, vollkommen physiologischen Bedingungen in Verbindung bringt. Dies könnte einen neuen Blickwinkel auf mikrogliale Funktionen eröffnen. / The effect of physical activity and enriched environment on cell genesis in the cerebral cortex of adult mice were investigated. It is well known that living under the conditions of an enriched environment and physical activity both enhance the generation of new neurons in the adult murine hippocampus. To label proliferating cells mice were injected with bromodesoxyuridine (BrdU). The number of BrdU incorporating cells in different regions and layers of the cerebral cortex was determined 1 day and 4 weeks after BrdU administration. To characterize cortical BrdU+ cells phenotypically immunohistochemistry and confocal microscopy were used. Adult-generated cortical cells were glial cells. None of all the examined cortical BrdU+ cells showed immunoreactivity for NeuN (expressed in mature neurons) unambiguously indicating that the generation of new neurons in the adult brain is a speciality of the hippocampus and other brain structures. Physical activity (RUN) and enriched environment (ENR) did not affect the number of BrdU+ cells in all cortical regions taken together compared to control animals (CTR), both 1 day and 4 weeks after BrdU. However, the known effects of RUN and ENR on hippocampal cell genesis were replicated suggesting that the enhancement of adult hippocampal neurogenesis by RUN and ENR is a hippocampus-specific reaction and not part of a generalized reaction of the adult cns. It was shown that physical activity and enriched environment had effects on cell genesis in distinct cortical layers and regions. RUN-animals had significantly more BrdU+ cells in layer I of the cingulate, motor and visual cortex than CTR. ENR-animals had significantly more BrdU+ cells in layer II/III of the visual cortex than CTR 4 weeks after BrdU. Phenotyping of BrdU+ cells in these cortical parts revealed that RUN led to a marked increase of the generation of microglia. ENR tended to enhance astrocytogenesis in several cortical parts (reaching significance in layer I of the motor cortex 4 weeks after BrdU). This is the first report that physical activity stimulates the generation of cortical microglia in a cell-type-specific and to some degree region-specific manner. This result is surprising because microglial proliferation and activation are generally thought to occur under conditions involving damage to the nervous system. In fact, this is one of the first reports linking a microglial reaction with an entirely physiological condition. This might shed a new light on microglial function.
4

N-Methyl-D-Aspartat-Antagonisten induzierten apoptotische Zelluntergänge im Gehirn junger Ratten

Miksa, Michael 06 April 2004 (has links)
Der wichtigste exzitatorische Neurotransmitter Glutamat spielt eine grosse Rolle in der Gehirnentwicklung, wie neuronale Migration und Synaptogenese. Ob glutamaterge Stimulation für das Überleben entwickelnder Neuronen notwendig ist, war bislang jedoch unbekannt. Um zu untersuchen, ob eine Hemmung von Glutamatrezeptoren im unreifen Gehirn zu Neurodegeneration führt, wurden Ratten im Alter von 1 bis 31 Tagen für 24 Stunden mit dem N-Methyl-D-Aspartat-(NMDA) Glutamatrezeptorantagonisten Dizocilpin (MK801) behandelt. Die Dichte neuronaler Degeneration wurde mikroskopisch in Kupfer-Silber- und TUNEL- gefärbten Hirnschnittpräparaten ermittelt und Unterschiede mittels ANOVA analysiert (Signifikanzniveau p / The predominant excitatory neurotransmitter glutamate plays a major role in certain aspects of neural development. However, whether developing neurons depend on glutamate for survival remains unknown. To investigate if deprivation of glutamate stimulation in the immature mammalian brain causes neuronal cell death (apoptosis), rat pups aged 0 to 30 days were treated for 24 hours with dizocilpine maleate (MK801), an N-methyl-D-aspartate-(NMDA) glutamate receptor antagonist. Density of neural degeneration was evaluated by a stereological dissector method in cupric-silver and TUNEL-stained brain slices. Groups were compared by ANOVA and significance considered at p

Page generated in 0.0187 seconds