• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaktion zwischen entorhinalem Kortex und Hippokampus bei der Temporallappenepilepsie

Behr, Joachim 28 January 2003 (has links)
1. Interaktion zwischen entorhinalem Kortex und Hippokampus Lernen und Gedächtnis sind auf das engste mit dem Hippokampus und dem entorhinalen Kortex (EC) verbunden. Allerdings sind diese Hirnstrukturen auch an einer der häufigsten und medikamentös oftmals nur schwer therapierbaren fokalen Epilepsien beteiligt: der mesialen Temporallappenepilepsie (TLE). Der EC scheint eine wesentliche Bedeutung in der Generierung extrahippokampaler Temporallappenanfälle zu besitzen. Unsere bisherigen Untersuchungen zur Interaktion zwischen dem EC und dem Hippokampus haben gezeigt, daß unter physiologischen Bedingungen die Area dentata eine Filterfunktion übernimmt und die Übertragung epileptiformer Aktivität vom EC zum Hippokampus unterbindet. Im chronisch epileptischen Tier (Kindling-Modell) kommt es allerdings zu einer Aufhebung dieser Filterfunktion und somit zu einer ungehinderten Ausbreitung epileptiformer Aktivität in den Hippokampus. Da der glutamaterge NMDA-Rezeptor eine zentrale Rolle in der Induktion nutzungsabhängiger Plastizität spielt, ist er von wesentlicher Bedeutung in der Epileptogenese. Untersuchungen an Körnerzellen der Area dentata zeigten wenige Stunden nach dem letzten epileptischen Anfall eine Zunahme der über NMDA-Rezeptoren vermittelten Ströme. Diese führte zu einer Faszilitierung hochfrequenter reizevozierter Potentiale. Dieser Befund zeigt, daß im epileptischen Gewebe hochfrequente Entladungen die Area dentata überwinden können und in den Hippokampus weitergeleitet werden. Vier Wochen nach dem letzten Anfallsereignis waren die beschriebenen Veränderungen allerdings nicht mehr nachweisbar. Diese kurzzeitig veränderte synaptische Transmission der NMDA-Rezeptorkanäle scheint demzufolge eher für die Epileptogenese als für die Ictogenese verantwortlich zu sein. Die Bedeutung der Kainat-Rezeptoren im chronisch epileptischen Gewebe ist aufgrund der bis vor wenigen Jahren fehlenden selektiven Agonisten und Antagonisten kaum untersucht worden. Wir haben gezeigt, daß in der Area dentata des chronisch epileptischen Tieres (Kindling-Modell) die Aktivierung von präsynaptischen Kainat-Rezeptoren inhibitorischer Interneurone sowohl die spontane als auch die reizevozierte GABA-Freisetzung reduziert. Über diesen Mechanismus scheint der während eines epileptischen Anfalls vermehrt freigesetzte exzitatorische Neurotransmitter Glutamat die GABAerge Inhibition zu vermindern und somit die Erregbarkeit der Area dentata zu steigern. 2. Die Rolle des Subikulums in der Temporallappenepilepsie Eine wesentliche Aufgabe des Subikulums ist es, hippokampale Informationen zu verarbeiten und in verschiedene kortikale und subkortikale Hirnregionen weiterzuleiten. Zudem scheint es von besonderer Bedeutung für die Generierung und Ausbreitung hippokampaler Anfälle zu sein. Gestützt wird diese Annahme durch folgende Befunde: Zunächst besitzt das Subikulum Netzwerkeigenschaften, die es ihm im in vitro Epilepsiemodell ermöglichen, spontane epileptiforme Aktivität zu generieren. Darüber hinaus verfügt es über einen hohen Anteil sogenannter burst-spiking Zellen. Deren intrinsische Eigenschaften tragen erheblich zu dem epileptogenen Verhalten des Subikulums bei. Weiterhin erhalten subikuläre Pyramidenzellen exzitatorische Eingänge sowohl aus der Area CA1 als auch aus dem EC, welche bereits bei Ruhemembranpotential aktivierbare NMDA-Rezeptorströme zeigen. Schließlich zeigen burst-spiking Zellen im Vergleich zu regular-spiking Zellen eine ausgeprägte über NMDA-Rezeptoren vermittelte synaptische Plastizität (Langzeit-Potenzierung; LTP). Untersuchungen am chronisch epileptischen Tier (Kindling-Modell) ergaben einen unverändert hohen Anteil an burst-spiking Zellen im Subikulum. Wenige Stunden nach dem letzten epileptischen Anfall fällt bei diesen Neuronen eine fehlende, durch Aktionspotentiale induzierte Nachhyperpolarisation auf. Diese supprimierte intrinsische Hemmung ist jedoch 28 Tage nach dem letzten epileptischen Anfall nicht mehr nachzuweisen und spielt demzufolge insbesondere in der Genese, weniger im chronischen Verlauf der Erkrankung eine Rolle. Neben den exzitatorischen und inhibitorischen Neurotransmittern Glutamat und GABA bestimmen auch körpereigene Amine wie Serotonin und Dopamin über subkortikale Afferenzen das funktionelle Gleichgewicht aus Erregung und Hemmung wesentlich mit. Da die TLE nicht selten mit neurologischen und psychiatrischen Erkrankungen einhergeht, die mit in das Dopamin- und Serotoninsystem eingreifenden Pharmaka therapiert werden, haben wir uns in einigen Arbeiten mit deren modulatorischen Wirkungen auf die Membraneigenschaften und die synaptische Transmission befaßt. Die Wirkungen von Dopamin auf die Neurotransmission sind vielfältig, abhängig von den beteiligten Rezeptoren in der entsprechenden Hirnregion. Das Subikulum, das eine ausgeprägte mesenzephale, dopaminerge Projektion vom ventralen Tegmentum erhält, expremiert sowohl D1- als auch D2-Rezeptoren. Wir konnten zeigen, daß Dopamin primär die glutamaterge synaptische Transmission über einen präsynaptisch lokalisierten D1-Dopaminrezeptor unterdrückt und sekundär über die verminderte Erregung inhibitorischer Interneurone die polysynaptische GABAerge Hemmung reduziert. / 1. Interaction between the entorhinal cortex and the hippocampus The hippocampus and the entorhinal cortex are crucially involved in the acquisition, consolidation and retrieval of long-term memory traces. However, both structures play a critical role in pharmacologically intractable temporal lobe epilepsy. The entorhinal cortex provides the main input to the hippocampus. We have shown that kindling facilitates the propagation of epileptiform activity through the dentate gyrus. Our data are consistent with the normal function of the dentate gyrus as a filter limiting the spread of epileptiform activity within the entorhinal-hippocampal complex. This gating mechanism breaks down after chronic epilepsy induced by kindling. In the mammalian brain, the NMDA subclass of glutamate receptors plays a central role in the induction of several forms of use-dependent plasticity. However, synaptic plasticity can potentially underlie pathological situations, notably in animal and human forms of epilepsy. The enhanced excitability of the kindled dentate gyrus several hours after the last seizure, as well as the breakdown of its gating function, appear to result from transiently enhanced NMDA receptor activation that provides significantly slower EPSC kinetics than those observed in control slices and in slices from kindled animals with a four weeks seizure-free interval. Therefore, NMDA receptors seem to play a critical role in the acute throughput of seizure activity and in the induction of the kindled state but not in the persistence of enhanced seizure susceptibility. The functional involvement of kainate receptors in epileptogenesis gets more and more elucidated. We found that in chronic epileptic rats (kindling-model), activation of presynaptic kainate receptors of inhibitory interneurons depresses spontaneous and stimulus-induced GABA release. The kindling-induced sensitivity of GABA release to kainate receptor activation may produce a use-dependent hyperexcitability in the epileptic dentate gyrus facilitating the spread of limbic seizures through the entorhinal-hippocampal complex in temporal lobe epilepsy. 2. The role of the subiculum in temporal lobe epilepsy The subiculum controls most of the entorhinal-hippocampal output. It receives strong excitatory input from area CA1 and the entorhinal cortex and relays information to a variety of distant cortical and subcortical structures. The subiculum seems to be crucially involved in the generation and propagation of hippocampal seizures. The seizure susceptibility of the subiculum relies (a) on a high fraction of burst-firing principle cells that a capable to undergo synaptic plasticity and (b) on an epilepsy-prone network to generate spontaneous seizures. In both, control and kindled preparations the subiculum contains an extensive sub-population of bursting cells expressing amplifying membrane characteristics. Subicular cells showed a transient depression of the fast and slow afterhyperpolarization in the course of kindling that may contribute to the induction but not permanence of the kindled state. Apart from the excitatory and inhibitory neurotransmission physiological amines like 5-HT and dopamine (DA) may offset the frail balance between excitation and inhibition in the hippocampus. As temporal lobe epilepsy is often associated with diseases that are treated with drugs affecting the 5-HT and DA system, we investigated the effect of these transmitters on intrinsic and synaptic properties of subicular principle cells. The subiculum receives a dense mesencepahalic dopaminergic projection from the ventral tegmental area and expresses high levels of D1- and D2-like DA receptors. Our results indicate that DA strongly suppresses glutamatergic hippocampal and entorhinal neurotransmission onto subicuar neurons by activation of presynaptic D1-like DA receptors. In addition, DA decreases polysynaptic inhibition by attenuating the glutamatergic drive onto subicular interneurons.
2

Molekulargenetische Kartierung von genetischen Determinanten bei idiopathisch generalisierten Epilepsien

Sander, Thomas 06 March 2001 (has links)
Ziel unserer molekulargenetischen Studien ist es, Gene der genetisch komplexen idiopathisch generalisierten Epilepsien (IGE) im Genom des Menschen zu lokalisieren und die verantwortlichen Genstörungen durch die Mutationsanalyse von positionell und funktionell plausiblen Kandidatengenen zu identifizieren. Unsere Kopplungsanalysen konnten einen IGE-Locus (Locus-Symbol: EJM1) in der chromosomalen Region 6p21.3 bestätigen und die Kandidatengenregion auf ein chromosomales Segment von 10 centiMorgan (cM) eingrenzen. Ein positionell und funktionell plausibles Kandidatengen ist das Gen einer Untereinheit des heterodimeren GABAB Rezeptors (Gen-Symbol: GABA-BR1). Die systematische Mutationsanalyse des GABA-BR1 Gens und eine Assoziationsstudie mit drei Sequenzpolymorphismen in den Exonen 1a1, 7 und 11 ergaben keinen Anhalt für eine Beteiligung des GABA-BR1 Gens bei der Epileptogenese der IGE. Kopplungshinweise in den chromosomalen Regionen 20q13, 8q24 und 15q14 konnten wir in unserem Familienkollektiv nicht bestätigen. Die Mutationsanalyse der Kandidatengene CHRNA4 und KCNQ2 in der Kandidatengenregion 20q13 und von zwei Kalziumkanal-Genen (CACNA1A, CACNB4) ergaben keinen Hinweis auf disponierende Sequenzvarianten bei IGE-Patienten. Unsere systematische Genomanalyse bei 130 Familien mit mehreren IGE-Angehörigen zielte auf die positionelle Eingrenzung von Genstörungen, die an der Disposition eines breiten IGE-Spektrums beteiligt sind. Bei 360 der 694 Familienangehörigen lag ein IGE-Phänotyp vor. Bei 617 Familienangehörigen wurden für die systematische Genomanalyse insgesamt 416 Mikrosatelliten-Polymorphismen mit einem durchschnittlichen Abstand von 10 cM genotypisiert. Die parameter-freien Kopplungsanalysen ergaben einen signifikanten Kopplungsbefund in der chromosomalen Region 3q26 (P = 1,7 x 10-5 bei D3S3725) sowie zwei Kopplungshinweise in den chromosomalen Regionen 2q36.1 (P = 5,4 x 10-4 bei D2S1371) und 14q23 (P = 5,6 x 10-4 bei D14S63). Positionell und funktionell plausible Kandidatengene sind die Gene des Kalium-Kanals KCNA1B und des Chlorid-Kanals CLCN2 in der Region 3q26, das Gen des Chlorid-Bikarbonat Austauschers SLC4A3 in der Region 2q36, und das Gen des Natrium-Kalzium Austauschers SLC8A3 in der Region 14q23. Der molekulargenetische Nachweis von Genmutationen für die IGE wird konkrete Einblicke in die molekularen Mechanismen der Epileptogenese eröffnen und die Voraussetzungen dafür schaffen, rational begründete Therapieansätze zu entwickeln. / The aim of our molecular genetic studies is to map genes of the genetically complex idiopathic generalized epilepsies on the human genome and to identify the causative gene variants by mutation analyses of positional and functional plausible candidate genes. Our linkage studies confirmed an IGE-locus (locus symbol: EJM1) in the chromosomal region 6p21.3 and to refine the candidate region to a chromosomal segment of 10 centiMorgan (cM). A positional and functional candidate gene is the gene encoding a subunit of the heterodimeric GABAB receptor (gene symbol: GABA-BR1). The systematic mutation screening of the GABA-BR1 gene and an association analysis with three sequence polymorphisms in exons 1a1, 7 and 11 provided no evidence that the GABA-BR1 gene confers susceptibility to the epileptogenesis of IGE. We failed to replicate previous linkage findings in the chromosomal regions 20q13, 8q24 and 15q14 in our family sample. Mutation analysis of the candidate genes CHRNA4 and KCNQ2 and two genes encoding calcium channel subunits (CACNA1A, CACNB4) did not detect common susceptibility alleles in IGE patients. Our systematic genome scan was designed to identify susceptibility loci that predispose to a broad spectrum of common IGE syndromes. Our study included 130 families with two or more siblings affected by an IGE. In total, 360 out of 694 family members were affected by an IGE-trait. 617 family members were genotyped for 416 microsatellite polymorphisms with an average distance of 10 cM. Non-parametric linkage analysis provided significant evidence for a novel IGE susceptibility locus on chromosome 3q26 (ZNPL = 4.19 at D3S3725; P = 0.000017) and suggestive evidence for two IGE loci on chromosome 14q23 (ZNPL = 3.28 at D14S63; P = 0.000566), and chromosome 2q36 (ZNPL = 2.98 at D2S1371; P = 0.000535). Positional and functional candidate genes include the potassium channel gene KCNA1B and the chloride channel gene CLCN2 in the region 3q26, the chloride-bicarbonate anion exchanger gene SLC4A3 in the region 2q36, and the sodium-calcium exchanger gene SLC8A3 in the region 14q23. The molecular genetic detection of susceptibility genes for IGE will provide clues to elucidate the complex molecular pathways of epileptogenesis, and, finally, will help to develop rational treatment strategies.

Page generated in 0.0238 seconds