Spelling suggestions: "subject:"yangmills, deoria dde"" "subject:"yangmills, deoria dee""
1 |
Instantons em espaços curvos / Instantons in curved spacesTavares, Gustavo Marques 24 September 2018 (has links)
Orientador: Ricardo Antonio Mosna / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T14:09:39Z (GMT). No. of bitstreams: 1
Tavares_GustavoMarques_M.pdf: 695474 bytes, checksum: c437bafa3afb0c0768437e1a139eea12 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho estudamos os instantons da teoria de Yang-Mills nos espaços de Schwarzs-child e de Reissner-Nordstrom com grupo de gauge SU(2).Instantons são soluções clássicas da teoria de Yang-Mills definida em um espaço com métrica riemanniana (positiva-definida) e com ação finita.
Primeiramente revisamos a formulação geométrica da teoria de Yang-Mills em uma variedade 4-dimensional,identificando os campos de gauge com conexões em um fibrado principal. Em seguida apresentamos os principais resultados clássicos relacionados aos instantons no espaço plano. Na segunda parte da dissertação realizamos um estudo sistemático das soluções da teoria de Yang-Mills nos espaços de Schwarzschild e de Reissner-Nordstrom euclidianos. Esta abordagem nos permitiu descobrir novas famílias de instantons neste contexto.Ainda,os resultados obtidos mostram que o número de famílias de instantons no espaço de Reissner- Nordstrom depende diretamente da carga elétrica que caracteriza esta geometria / Abstract: In this work we study instanton solutions of the Yang-Mills theory in Schwarzschild and Reissner-Nordstrom spaces with gauge group SU(2).Instantons are solutions to the classical field equations of Yang-Mills theory defined in a space with Riemannian (positive de finite)metric with finite action. We begin with a review of the geometric setting of Yang-Mills theory on a four dimensional manifold,which relates the gauge fields to connections on a fiber bundle.We proceed by presenting the main results related to instantons in flat space. In the second part of this thesis we perform a systematic study of the solutions of Yang-Mills theory in Euclidian Schwarzschild and Reissner-Nordstrom spaces.This approach led us to discover a new family of instantons de fined in those backgrounds. Moreover, our results show that the number of instanton families in the Reissner-Nordstrom space depends directly on the eletric charge which caracterizes this geometry / Mestrado / Física das Particulas Elementares e Campos / Mestre em Física
|
2 |
Mapas momento em teoria de calibre / Moment maps in gauge theoryBranco, Lucas Magalhães Pereira Castello, 1988- 22 August 2018 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-22T22:29:57Z (GMT). No. of bitstreams: 1
Branco_LucasMagalhaesPereiraCastello_M.pdf: 1981391 bytes, checksum: 7ecd7674514f634b8bb527c0bcab1a06 (MD5)
Previous issue date: 2013 / Resumo: Neste trabalho os aspectos básicos da teoria de calibre são abordados, incluindo as noções de conexão e curvatura em fibrados principais e vetoriais, considerações sobre o grupo de transformações de calibre e o espaço de moduli de soluções para a equação anti-auto-dual em dimensão quatro (o espaço de moduli de instantons). Posteriormente, mapas momento e redução são introduzidos. Primeiramente, no contexto clássico de geometria simplética e depois no contexto de geometria hyperkähler. Por fim, são apresentadas aplicações da teoria de mapas momento e redução em teoria de calibre. As equações ADHM são introduzidas e mostra se que estas podem ser dadas como o conjunto de zeros de um mapa momento hyperkähler. Além disso, considerações são feitas acerca da construção ADHM de instantons, que relaciona soluções dessas equações com as soluções da equação de anti-auto-dualidade. O espaço de moduli de conexões planas é também abordado. Neste caso, a curvatura é vista como um mapa momento e os cálculos podem ser generalizados para o espaço de moduli de conexões planas sobre variedades Kähler de dimensões mais altas e para o espaço de moduli de instantons sobre variedades hyperkähler de dimensão quatro / Abstract: In this work it is developed the basic concepts of gauge theory, including the notions of connections and curvature on principal bundles and vector bundles, considerations on the group of gauge transformations and the moduli space of anti-self-dual connections in dimension four (the instanton moduli space). After, moment maps and reduction are introduced. First in the classical context of symplectic geometry, then in hyperkähler geometry. At last, applications to the theory of moment maps and reduction in gauge theory are given. The ADHM equations are introduced and it is shown that solutions to these equations can be given by the zeros of a hyperkähler moment map. Furthermore, the ADHM construction, that relates the ADHM equations to instanton solutions, is discussed. The moduli space of flat connections over a Riemann surface is also treated. In this case, the curvature is seen as a moment map and the calculations can be generalized to flat connections over higher-dimensional Kähler manifolds and to the instanton moduli space over four dimensional hyperkähler manifolds / Mestrado / Matematica / Mestre em Matemática
|
3 |
Teoria de calibre em dimensões dois e quatro / Gauge theory in dimensions two and fourDe Martino, Marcelo Gonçalves, 1986- 12 February 2011 (has links)
Orientador: Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T09:52:31Z (GMT). No. of bitstreams: 1
DeMartino_MarceloGoncalves_M.pdf: 1604556 bytes, checksum: be41ad6ca9fd66921624adce95bf0939 (MD5)
Previous issue date: 2012 / Resumo: Este trabalho procurou apresentar os conhecimentos básicos necessários para trabalhar com a teoria de calibre em baixas dimensões e também mostrar algumas aplicações da mesma. Na parte básica da teoria, além de comentar aspectos da teoria de Hodge para variedades compactas, também se discute, com certo nível de detalhes, os conceitos de fibrados vetoriais e conexões, com ênfase dada para os cálculos locais com conexões e curvaturas. Duas aplicações mais concretas da teoria de calibre são apresentadas nesta dissertação. Primeiro, em dimensão quatro, discute-se a equação de Yang-Mills sobre 4-variedades e é apresentada uma solução para a equação anti-auto-dual, solução esta que é conhecida na literatura como ansatz de 't Hooft. Por fim, é apresentada a prova, baseado no artigo [DONALDSON, 1983], de um importante teorema devido a M. S. Narasimhan e C. S. Seshadri que relaciona os conceitos de estabilidade com o de existência de conexão unitária satisfazendo certa propriedade, em fibrados vetoriais complexos sobre superfícies de Riemann / Abstract: In this work it is developed the basic knowledge required to deal with gauge theory in low dimension and it is shown some applications of this theory. Regarding the basic knowledge, apart from discussing some aspects of Hodge theory over compact manifolds, it is also covered, with a certain deal of details, the concepts of vector bundles and connections, paying close attention to the local computations regarding connections and curvature. As for the applications of the theory, we start, in dimension four, by treating the Yang-Mills equation over 4-manifolds and it is showed a solution to the anti-self-dual Yang-Mills equation, solution that is known in the literature as the 't Hooft ansatz. At last, it is given a proof, following the paper [DONALDSON, 1983], of an important theorem due to M. S. Narasimhan and C. S. Seshadri that relates the algebro-geometric notion of stability to the differential-geometric notion of existence of unitary connection whose curvature satisfies a certain condition, on vector bundles over Riemann surfaces / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0503 seconds