• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of a Multi-reentrant Two-mirror Yb:YAG Ring Laser

Chang, Yung-Hsin 17 June 2004 (has links)
In the past thirty years, high power laser technology has been dominated by Nd:YAG as the gain medium. The pump wavelength of Nd:YAG is 808nm, and the lasing wavelength is 1064nm. It is categorized as four-level laser. The pump wavelength of Yb:YAG is 940nm, and the lasing wavelength is 1030nm. It falls into quasi-three-level laser category. Because Yb:YAG have higher quantum efficiency and less surplus heat, it have the potential to replace Nd:YAG. The purpose of this study is to develop a multi-reentrant two-mirror Yb:YAG ring laser. In this thesis, we will introduce multi-reentrant two-mirror ring laser. The thermal problem of quasi-three-level laser was overcome by multi-wavelength coating on gain medium and input/output couplers, numerical simulation for mode match, and efficient TE-cooling for laser crystal. This symmetrical two-mirror figure ¡§8¡¨ ring cavity has the merit of compact, few optical elements, and easy design. The 1030nm output laser of our ring cavity promises to make the design widely applicable to solid-state lasers, such as single longitudinal lasers and mode-locked lasers.
2

The Study and Fabrication of Optical Coatings on Cr4+:YAG Crystal Fiber Laser and Yb3+:YAG-silica Fiber Laser

Ji, Kuan-Dong 03 July 2008 (has links)
Recently, with the escalating demands for optical communication, the need to use broadband laser light sources in optical communication network system has increased. Henceforward, the broadband characteristes of Cr4+:YAG crystal fiber possess signifies its indispensability. Furthermore, Yb3+:YAG-silica also has its advantages in high power laser domain. In this thesis, the crystal fiber grown by the laser heated pedestal growth method is used as the laser gain medium with fused silica packaging technique. Cr4+:YAG double-clad crystal fiber with a core diameter as small as 11 £gm was achieved. Moreover, a Yb3+:YAG-silica layer was formed due to the strong inter-diffusion between silica capillary and Yb3+:YAG crystal. When the silica all diffused into the Yb3+:YAG, a Yb3+:YAG-silica fiber with 125-£gm core was obtained with waveguide structure. By directly coating the optical thin films onto the end faces of the two types of fibers, the laser configuration is compact and cost effective. Besides, heat dissipation is also improved. By Cu-Al alloy packaging, a record-low Cr4+:YAG double-clad crystal fiber laser was achieved with threshold of 0.75 mW and a record-high slope efficiency of 6.9% at room temperature. And we also successfully fabricate the Yb3+:YAG-silica fiber laser with low threshold (100 mW) and high efficiency (67.2%) at room temperature. In fiber laser development, we have successfully fabricated the coating of high-reflective thin films which match the faces of fiber heterostructure (single cladding and double cladding structures). It forms a cavity with anti-reflectivity for pumping wavelength and high-reflectivity for lasing wavelength. For these reasons, low threshold, high slope efficiency, and stable laser output have been achieved. Finally, through different thin-film designs, the strain effect between thin film and heterosubstrate is significantly reduced, which facilitates the realization of high performance fiber lasers.
3

Structural Properties and Two Photon Luminescence Study of Yb:YAG Single Crystal

Peng, Chih-Hao 09 July 2012 (has links)
High quality YbxY1-xAG (0≤x≤1) single crystals were grown by using the Czochralski method. The structural properties of YbxY1-xAG (0≤x≤1) single crystals were also investigated using the EXAFS method. Additionally, for the first time, EXAFS results were compared with XRD results. Moreover, without essential lattice structure transformation, YbxY1-xAG crystals can be found due to the varying of doping concentration in XRD measurements. However, EXAFS measurements indicated that the local fine structural variation around the Yb3+ ion depends on the Yb3+ concentration. This work also studies the two-photon luminescence spectra of a Yb3+ doped YAG crystals. To study the spectral performance of Yb:YAG crystal, intense green light (centered at about 544nm) was generated by the crystal upon excitation using a 973nm InGaAs LD pump source. The luminescence spectra were obtained for various Yb concentrations and the emission intensity were plotted versus Yb3+ concentration. The green emission light attributed to Yb3+ two-photon transition.
4

The Study and Fabrication of High Efficiency Yb:YAG Ring Laser

Cheng, Kuo-Wei 21 July 2005 (has links)
In the past three decades, Nd:YAG has been the dominating high power solid-state laser gain medium. Compared with Nd:YAG, Yb:YAG has lower quantum defects which produces less heat so that it can reduce thermo-optical deformation. In addition, the achieved doping concentration can be 100%, and the absorption FWHM at 941 nm is 18 nm. Based on above listed advantages, Yb:YAG has the potential to replace Nd:YAG. Using Yb:YAG as the laser gain medium in reentrant two-mirror laser cavity, we have succeeded in Yb:YAG ring laser and all the intracavity elements are coated by our electron gun deposition system. The main purpose of my research is to continue the previous result (slope efficiency: 20.1%), and further increasing the slope efficiency of our ring cavity with different round-trip transmittance of couplers. Besides, we measured and analyzed the polarization of the planar and non-planar ring cavities. At present, the highest slope efficiency we achieved is 38.9% with a round-trip transmittance of 16.4%.
5

The study of passively Q-switched Yb:YAG ring laser

Chen, Li-Hsuan 14 July 2006 (has links)
Compared with Nd:YAG, the traditional high power solid state laser gain medium, Yb:YAG has less quantum defect, no excited state absorption, and longer fluorescence lifetime, which makes it suitable for Q-switched laser. In addition, concentration quenching is absent in Yb:YAG, higher concentration of active ion makes the thickness of gain medium thinner. For ring cavities, the necessity of symmetrical beam path is important, a thinner Yb:YAG crystal can reduce the shift of optical beam path and avoids cavity unstability. Thus, Yb:YAG is suitable for the two-mirror ring cavity. In this study, a compact and efficient Yb:YAG ring laser with 50.3% slope efficiency was demonstrated. And the Yb:YAG ring laser performances influenced by thermal effect was analyzed and compared to that of Nd:YAG ring laser. The polarization of ring lasers with different configurations were also discussed. In manufacturing process, the coating design on gain medium and laser mirrors were introduced. The advantages of passively Q-switched laser are efficient, compact, simple setup and no complicated driving circuits. They make passively Q-switched laser suitable for various applications, such as nonlinear optics, medical treatment, micromachining, material processing, and range finder. Due to spontaneous noise from the gain medium, conventional passively Q-switched laser has large timing jitter. This study is to build up a passively Q-switched Yb:YAG/Cr4+:YAG ring laser with lower timing jitter. At present, a Q-switched ring laser with a peak power of 208 W and a pulse width of 33 ns, was developed. Its slope efficiency is 18.1% with a timing jitter of 11.9%. To our knowledge, this is the first passively Q-switched Yb:YAG/Cr4+:YAG ring laser.
6

Efficient Yb:YAG ring laser

Peng, Hsin 26 July 2006 (has links)
Though Nd:YAG has been widely used as the traditional high power solid-state laser gain medium, Yb:YAG has more advantages such as lower quantum defect, wider absorption and emission bandwidth, and longer fluorescence lifetime, which can be used in Q-switched lasers to storage more energy. In addition, a higher doping concentration Yb:YAG with thinner thickness reduces the shift of optical path, which reduces the ring cavity stability. Therefore Yb:YAG is an eminently suitable gain medium for the two-mirror ring laser. Due to the quasi-three-level characteristic of Yb:YAG, the thermal effect influences the re-absorption loss and deteriorates the laser performance, i.e. lower slope efficiency of laser. In this thesis, we improve the laser efficiency by using Yb:YAG crystal with proper thickness, and various round-trip transmittances with different output couplers were tried. The slope efficiency with 50.3 % has been achieved. We also tried to reduce the thermal loading of Yb:YAG by crystal fiber with Cu-Al alloy package. The fabrication process of Yb:YAG crystal fiber, including sample preparation, and coating design, and the experiment result of Yb:YAG crystal fiber ring laser will be presented in detail. Furthermore, we use numerical analysis to modify the passively Q-switched Yb:YAG ring laser rate equation with FDTD (finite difference time domain) method. The simulated repetition rate, pulse width and peak power were compared to the experimental results in order to optimaize laser performance.
7

Studium kvality řezu mezních tlouštěk oxidačního řezání v závislosti na průměru ohniskového spotu při laserovém dělení materiálu / Study cutting quality of flame cutting of limit thicknesses depending on the diameter of the focal spot during laser cutting of material

Maňas, Petr January 2016 (has links)
Experimental work evaluated the dependence of the thickness of the cutting edge, its roughness and assessment of appearance with regard to the defects resulting from the diameter of the focal spot during oxidative cutting Yb:YAG laser. Other variables include the experiment: process parameters such as laser power, cutting speed, oxygen pressure and focus position. Experiment is based on the Taguchi tables. Test samples were cut off from sheet thickness 10, 15 and 20 mm. Representatives of conventional steel were S235JRC+N, S235JR, S235JR+N and steel type RAEX developed for laser and plasma cutting. Samples were evaluated according to the ČSN EN ISO 9013. The evaluation of samples was into classes according to standards of quality. Hardness measurements were performed on the samples thickness 20 mm of convectional steel and steel type RAEX.
8

Yb:YAG Laser Crystals with Controlled Doping Distribution

Arzakantsyan, Mikayel 21 March 2013 (has links) (PDF)
Le développement de lasers solides de puissance-moyenne élevée doit faire face à des problèmes très spécifiques. La gestion de la thermique et de l'amplification de l'émission spontanée (ASE) pour de larges amplificateurs lasers deviennent des points clés lorsque l'augmentation de l'énergie de vient conséquente. Lucia est une chaîne laser de forte puissance moyenne qui repose sur le concept du miroir actif avec un cristal ou une céramique d'Yb:YAG comme milieu à gain. Comme pour d'autres systèmes lasers comparables, la distribution des ions actifs du milieu à gain est homogène en volume. Un profil variable du taux de dopage présente des avantages significatifs en termes de gain et par conséquent ouvre le chemin à une minimisation efficace des effets délétères de l'ASE et de l'échauffement. Cette thèse concerne la fabrication de tels milieux à gain. La méthode de croissance cristalline Bagdasarov, grâce à plusieurs de ses particularités, a permis d'obtenir plusieurs cristaux d'Yb:YAG avec profils de dopage variables contrôlés jusqu'à des valeurs de gradient de 3 at%/cm. Les résultats expérimentaux sont en bon accord avec les modèles mathématiques. Des simulations complémentaires de la température et du profil de gain montre que même avec des gradients plus faibles, les performances énergétiques des amplificateurs Lucia peuvent être améliorées jusqu'à 30%. Il est aussi alors possible d'utiliser des milieux à gain plus fins ce qui a pour conséquence positive une meilleure extraction de la chaleur. De larges cristaux d'Yb:YAG de 90 mm de diamètre ont été produits.
9

Ytterbium-doped Fiber-seeded Thin-disk Master Oscillator Power Amplifier Laser System

Willis-Ott, Christina 01 January 2013 (has links)
Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. iv Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 μm respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 μm laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems.
10

Optical And Physical Properties Of Ceramic Crystal Laser Materials

Simmons, Jed 01 January 2007 (has links)
Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption spectra, and fluorescence lifetime were measured for Nd:YAG ceramic crystal and Yb:Lu2O3 ceramic crystal. No apparent inhomogeneous broadening appears to exist in the Nd:YAG ceramic at low concentrations. Concentration and temperature dependence effects on emission spectra were measured and are presented. Laser action in a thin disk of Yb:Y2O3 ceramic crystal was achieved. Pumping was accomplished with a fiber coupled diode laser stack at 938 nm. A slope efficiency of 34% was achieved with maximum output energy of 28.8 mJ/pulse.

Page generated in 0.0166 seconds