Spelling suggestions: "subject:"zahlentheorie"" "subject:"schalentheorie""
1 |
Untersuchung der oberen Schranke für Sophie-Germain-BegleitprimzahlenHerbst, Marina. January 2007 (has links)
Konstanz, Univ., Diplomarbeit, 2007.
|
2 |
Vergleichende multiplikative ZahlentheorieSchlage-Puchta, Jan-Christoph. January 1997 (has links) (PDF)
Freiburg (Breisgau), Universiẗat, Diss., 1998.
|
3 |
Zahlvorstellung und Operieren am mentalen Zahlenstrahl eine Untersuchung im mathematischen Anfangsunterricht zu computergestützten Eigenkonstruktionen mit Hilfe einer LOGO-Umgebung /Klaudt, Dieter. January 2005 (has links)
Ludwigsburg, Pädagog. Hochsch., Diss., 2005.
|
4 |
Le problème de la répartition proportionnelle /Leyvraz, Jean-Pierre January 1977 (has links)
Th. Sc. techn. Lausanne EPFL, 1977.
|
5 |
On Beatty sets and some generalisations thereof / Über Beatty-Mengen und einige Verallgemeinerungen dieserTechnau, Marc January 2018 (has links) (PDF)
Beatty sets (also called Beatty sequences) have appeared as early as 1772 in the astronomical studies of Johann III Bernoulli as a tool for easing manual calculations and - as Elwin Bruno Christoffel pointed out in 1888 - lend themselves to exposing intricate properties of the real irrationals. Since then, numerous researchers have explored a multitude of arithmetic properties of Beatty sets; the interrelation between Beatty sets and modular inversion, as well as Beatty sets and the set of rational primes, being the central topic of this book. The inquiry into the relation to rational primes is complemented by considering a natural generalisation to imaginary quadratic number fields. / Zu gegebener Beatty-Menge \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) mit irrationalem \(\alpha>1\) und \(\beta\in\mathbb{R}\), sowie gegebener Primzahl \(p\) und hierzu teilerfremdem \(z\) untersuchen wir das Problem der Auffindung von Punkten \((m,\tilde{m})\) auf der modularen Hyperbel
\[
\mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\}
\]
mit \(\max\{ m, \tilde{m} \}\) so klein wie möglich, d.h. wir für gewisse \(\alpha\) beweisen nichttriviale Abschätzungen für
\[
\min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \}.
\]
Der Beweis fußt auf neuen Abschätzungen für unvollständige Kloosterman-Summen entlang \(\mathscr{B}(\alpha,\beta)\), welche durch das Speisen einer Methode von Banks und Shparlinski mit neuen Abschätzungen für die periodische Autokorrelation der endlichen Folge
\[
0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)},
\]
erhalten werden; (Hierbei bezeichnet \(\overline{m}\) die eindeutige natürliche Zahl \(m'\in[1,p)\) mit \(mm'\equiv 1\bmod p\) und wir schreiben \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\).) Für letzteres adaptieren wir Ideen von Kloosterman.
Des weiteren untersuchen wir Mengen der Form \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). Wir zeigen, dass diese stets in einer gewöhnlichen Beatty-Menge \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) enthalten sind und geben zulässige Werte für \(\tilde{\alpha}\) und \(\tilde{\beta}\) an. Das Komplement \(\mathscr{C} = \mathscr{B}(\tilde{\alpha},\tilde{\beta}) \setminus \{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\) erweist sich als endliche Menge und wir bestimmen obere Schranken für das Supremum von \(\mathscr{C}\).
Die Beweise gründen sich auf einfache Verteilungseigenschaften der Folge der Nachkommastellen \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), sofern \(\alpha_1^{-1}\alpha_2\) irrational ist, und berufen sich anderenfalls auf die Endlichkeit der Frobenius-Zahl einer geeignet gewählten Instanz des Frobeniusschen Münzproblems.
Abschließend verallgemeinern wir die Definition von Beatty-Mengen auf imaginär-quadratische Zahlkörper in einer natürlichen Weise. Hat der fragliche Zahlkörper Klassenzahl \(1\), so können wir zeigen, dass diese Beatty-artigen Mengen unendlich viele Primelemente enthalten, sofern der zugehörige Parameter \(\alpha\) nicht im betrachteten Zahlkörper enthalten ist. Für den speziellen Zahlkörper \(\mathbb{Q}(i)\) erhalten wir unter Benutzung des Hurwitzschen Kettenbruch-Algorithmus eine Zahlkörper-Variante eines früheren Resultats von Steuding und dem Autor, welches ein Beatty-Analogon des klassischen Linnikschen Satzes über die kleinste Primzahl in einer arithmetischen Progression darstellt.
Die erwähnten Resultate werden durch Zahlkörper-Varianten von klassischen Ergebnissen über die Verteilung von \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), erhalten; Diese wurden kürzlich von Baier mittels der Harmanschen Siebmethode für \(\mathbb{Q}(i)\) bewiesen. Wir übertragen die zugehörigen Überlegungen auf Zahlkörper mit Klassenzahl \(1\). / For Beatty sets \(\mathscr{B}(\alpha,\beta) = \{ n\alpha+\beta : n\in\mathbb{N} \}\) with irrational \(\alpha>1\) and \(\beta\in\mathbb{R}\), and \(p\) prime and coprime to \(z\), we investigate the problem of detecting points \((m,\tilde{m})\) on the modular hyperbola
\[
\mathscr{H}_{z,p} = \{(m,\tilde{m}) \in \mathbb{Z}^2\cap[1,p )^2 : m\tilde{m}\equiv z\mod p\}
\]
with \(\max\{ m, \tilde{m} \}\) as small as possible, i.e., we obtain non-trivial estimates for
\[
\min\{ \max\{ m, \tilde{m} \} : (m,\tilde{m})\in\mathscr{H}_{z,p}, \, m\in\mathscr{B}(\alpha,\beta) \}
\]
for certain \(\alpha\).
The proof rests on new estimates for incomplete Kloosterman sums along \(\mathscr{B}(\alpha,\beta)\) which are in turn obtained on supplying a method due to Banks and Shparlinski with a new estimate for the periodic autocorrelation of the finite sequence
\[
0,\, \operatorname{e}_p(y\overline{1}),\, \operatorname{e}_p(y\overline{2}),\, \ldots,\, \operatorname{e}_p(y\overline{p-1}), \quad \text{with \(y\) indivisible by \(p\)},
\]
(\(\overline{m}\) denoting the unique integer \(m'\in[1,p)\) with \(mm'\equiv 1\bmod p\) and \(\operatorname{e}_p(x) = \exp(2\pi i x/p)\), the latter being obtained from adapting an argument due to Kloosterman.
Furthermore, we investigate sets of the shape \(\{\lfloor m\alpha_1+n\alpha_2+\beta\rfloor : m,n\in\mathbb{N} \}\). We show that they are always contained in some ordinary Beatty set \(\mathscr{B}(\tilde{\alpha},\tilde{\beta})\) where we give admissible choices for \(\tilde{\alpha}\) and \(\tilde{\beta}\). Their respective complement \(\mathscr{C}\) in this ordinary Beatty set is shown to be finite and bounds for the supremum of \(\mathscr{C}\) are provided. The proofs are based on basic distribution properties of the sequence of fractional parts \(\{n\alpha_1^{-1}\alpha_2\}\), \(n=1,2,\ldots\), when \(\alpha_1^{-1}\alpha_2\) is irrational, and appeal to the finiteness of the Frobenius number associated with a suitably chosen instance of the Frobenius coin problem otherwise.
Lastly, we generalise the definition of Beatty sets to imaginary quadratic number fields in a natural fashion. Assuming the number field in question to have class number \(1\), we are able to show that these Beatty-type sets contain infinitely many prime elements provided that the parameter corresponding to \(\alpha\) from above is not contained in the number field. When the number field is \(\mathbb{Q}(i)\), then, using the Hurwitz continued fraction expansion, we obtain a number field analogue of a previous result of Steuding and the author, who gave a Beatty set analogue of Linnik's famous theorem on the least prime number in an arithmetic progression. These results are obtained from number field analogues of classical results about the distribution of \(\{ p\vartheta \}\), \(p=2,3,5,7,11,\ldots\), \(\vartheta\in\mathbb{R}\setminus\mathbb{Q}\), which were worked out recently by Baier for \(\mathbb{Q}(i)\) using Harman's sieve method. We generalise these arguments to imaginary quadratic number fields with class number \(1\).
|
6 |
On coverings and reduced residues in combinatorial number theory / Über Abdeckungen und prime Restklassen in kombinatorischer ZahlentheorieStumpf, Pascal January 2022 (has links) (PDF)
Our starting point is the Jacobsthal function \(j(m)\), defined for each positive integer \(m\) as the smallest number such that every \(j(m)\) consecutive integers contain at least one integer relatively prime to \(m\). It has turned out that improving on upper bounds for \(j(m)\) would also lead to advances in understanding the distribution of prime numbers among arithmetic progressions. If \(P_r\) denotes the product of the first \(r\) prime numbers, then a conjecture of Montgomery states that \(j(P_r)\) can be bounded from above by \(r (\log r)^2\) up to some constant factor. However, the until now very promising sieve methods seem to have reached a limit here, and the main goal of this work is to develop other combinatorial methods in hope of coming a bit closer to prove the conjecture of Montgomery. Alongside, we solve a problem of Recamán about the maximum possible length among arithmetic progressions in the least (positive) reduced residue system modulo \(m\). Lastly, we turn towards three additive representation functions as introduced by Erdős, Sárközy and Sós who studied their surprising different monotonicity behavior. By an alternative approach, we answer a question of Sárközy and demostrate that another conjecture does not hold. / Der Startpunkt dieser Arbeit ist die Jacobsthal-Funktion \(j(m)\), die für jede natürliche Zahl \(m\) als die kleinste Zahl definiert ist, so dass je \(j(m)\) aufeinanderfolgende ganze Zahlen mindestens eine zu \(m\) teilerfremde Zahl enthalten. Es hat sich herausgestellt, dass Verbesserungen oberer Abschätzungen für \(j(m)\) gleichzeitig zu Fortschritten im Verständnis der Verteilung der Primzahlen in arithmetischen Folgen führen. Bezeichnet \(P_r\) das Produkt der ersten \(r\) Primzahlen, dann besagt eine Vermutung von Montgomery, dass \(j(P_r)\) bis auf einen konstanten Faktor durch \(r (\log r)^2\) von oben abgeschätzt werden kann. Allerdings scheinen die hier bisher sehr vielversprechenden Siebmethoden eine Grenze erreicht zu haben, und das Hauptziel dieser Arbeit ist es andere kombinatorische Methoden zu entwickeln, in der Hoffnung einem Beweis der Vermutung von Montgomery ein wenig näher zu kommen. Auf diesem Weg lösen wir nebenbei ein Problem von Recamán über die maximal mögliche Länge unter den arithmetischen Folgen im kleinsten (positiven) primen Restklassensystem modulo \(m\). Außerdem wenden wir uns am Ende drei additiven Darstellungsfunktionen zu, wie sie von Erdős, Sárközy und Sós eingeführt wurden, die deren überraschend unterschiedliches Monotonieverhalten untersucht haben. Mit einem alternativen Ansatz beantworten wir hier eine Frage von Sárközy und zeigen auf, dass eine andere Vermutung nicht bestehen kann.
|
7 |
Ring-Isomorphie-Probleme und das Faktorisieren großer ZahlenStaiger, Stefan. January 2005 (has links)
Stuttgart, Univ., Diplomarbeit, 2005.
|
8 |
Algebraic and Arithmetic Properties of Graph Spectra / Algebraische und Arithmetische Eigenschaften von Graph SpektrenMönius, Katja January 2021 (has links) (PDF)
In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974.
We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree.
Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs.
Besides that, we study spectra of zero-divisor graphs over finite commutative rings.
Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring. / In der vorliegenden Dissertation untersuchen wir algebraische und arithmetische Eigenschaften von Graph Spektren. Insbesondere studieren wir den algebraischen Grad eines Graphen, d.h. die Dimension des Zerfällungskörpers des charakteristischen Polynoms der zugehörigen Adjazenzmatrix über den rationalen Zahlen, und beschäftigen uns mit der Frage, ob es einen Zusammenhang zwischen dem algebraischen Grad eines Graphen und seinen strukturellen Eigenschaften gibt. Dies verallgemeinert die bis heute noch offene Fragestellung "Welche Graphen haben ganzzahliges Spektrum?", welche 1974 von Harary und Schwenk aufgeworfen wurde.
Wir geben einen Überblick über verschiedene Graphprodukte, da diese oftmals hilfreich sind bei der Untersuchung von Graph Spektren, und konstruieren damit Familien von integralen Graphen. Außerdem stellen wir einen Zusammenhang zwischen dem Diameter, dem maximalen Eckengrad und dem algebraischen Grad von Graphen vor, und konstruieren eine potenzielle Familie von Graphen, welche alle maximalen algebraischen Grad haben.
Zudem bestimmen wir den algebraischen Grad zirkulärer Graphen und finden neue Kriterien für Isospektralität solcher Graphen. Darüber hinaus lösen wir das inverse Galois Problem für zirkuläre Graphen, indem wir zeigen, dass jede endliche abelsche Erweiterung der rationalen Zahlen Zerfällungskörper eines zirkulären Graphen ist. Diese Resultate verallgemeinern einen Satz von So, in dem sämtliche integrale zirkuläre Graphen charakterisiert werden. Für unsere Beweise verwenden wir die Theorie der Schur Ringe, die bereits verwendet wurde, um das Isomorphieproblem für zirkuläre Graphen zu lösen.
Zu guter Letzt untersuchen wir Spektren von Nullteilergraphen über kommutativen Ringen. Zu einem gegebenen Ring \(R\) ist der zugehörige Nullteilergraph über \(R\) definiert als der Graph, dessen Eckenmenge den Nullteilern von \(R\) entspricht, und in dem je zwei Ecken \(x,y\) benachbart sind, wenn \(xy=0\) gilt. Wir studieren Zusammenhänge zwischen den Eigenwerten von Nullteilergraphen, deren strukturellen Eigenschaften und den algebraischen Eigenschaften der entsprechenden Ringe.
|
9 |
The Capitulation Problem in Class Field Theory / Das Kapitulationsproblem in der KlassenkörpertheorieBembom, Tobias 02 April 2012 (has links)
No description available.
|
10 |
Über die Sicherheit und Effizienz kryptographischer Verfahren in algebraischen ZahlkörpernMeyer, Andreas Alfred. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
|
Page generated in 0.0522 seconds