• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic Dissection of in vivo direct cellular reprogramming

Özcan, İsmail 01 December 2023 (has links)
Die Entschlüsselung der Mechanismen zur Regulierung der Zellidentität im Kontext der zellulären Reprogrammierung ist von zentraler Bedeutung für die Entwicklung von Strategien, die die Qualität und Sicherheit reprogrammierter Zellen für medizinische Anwendungen gewährleisten. Die Bedeutung der verschiedenen Regulationswege und die Art und Weise, wie die ursprüngliche Zellidentität verloren geht, während die neue Zellidentität durch Reprogrammierung etabliert wird, sind noch nicht vollständig verstanden. Um diese Fragen zu klären, haben wir ein neuartiges System entwickelt, in dem Coelomozyten (CCs), die in C. elegans endocytische und hepatische Funktionen haben, durch Überexpression des GATA-Transkriptionsfaktors (TF) ELT-7 bzw. des ZNF-Transkriptionsfaktors (TF) CHE-1, sowohl in darm-, als auch in neuronenartige Zellen umprogrammiert werden können. Wir haben einen RNAi-Screen mit 732 Chromatinregulatoren durchgeführt, um neue Enhancer/Suppressor-Pathways zu identifizieren, die an der direkten Reprogrammierung von CCs beteiligt sind. Dabei konnten wir zeigen, dass die Deletion von Effektorproteinargonauten und von Komponenten des nuklearen RNAi-Pathways die Reprogrammierung von CCs in Neuronen oder Darmzellen unterdrückt. Argonaut NRDE-3, das aus dem Zytoplasma in den Zellkern wandert, zeigte bei seiner Deletion die stärkste Unterdrückung der Reprogrammierung. Die Ergebnisse deuten darauf hin, dass die nukleäre RNAi-Maschinerie für die direkte zelluläre in vivo Reprogrammierung erforderlich sein könnte. Darüber hinaus haben wir ATAC-seq in FACs-sortierten CCs durchgeführt, um die Chromatinlandschaft während der CC-Reprogrammierung zu untersuchen. Darüber hinaus haben wir ein menschliches Transdifferenzierungsmodell etabliert, um die Rolle der nuklearen RNAi-Maschinerie und der zahlreichen konservierten Reprogrammierungsfaktoren, die in C. elegans während der direkten Reprogrammierung in vivo identifiziert wurden, zu erforschen. / Dissecting cell fate regulatory mechanisms in the context of cellular reprogramming is central to developing strategies that ensure the quality and safety of reprogrammed cells for medical applications. The importance of different regulatory pathways and how the original cell fate is shut down while establishing the new cell fate during reprogramming are not fully understood. To address these questions, we developed a novel system where coelomocytes (CCs), which have scavenging and hepatic function in C. elegans, can reprogram into both intestinal- and neuronal-like cells upon overexpression of GATA-type transcription factor (TF) ELT-7 and ZNF-type TF CHE-1, respectively. We performed an RNAi screen consisting of 732 chromatin regulators/remodelers to identify novel enhancer/suppressor pathways involved in the direct reprogramming of CCs. We showed that depletion of effector protein Argonauts and the nuclear RNAi pathway components suppresses CC reprogramming into either neurons or intestinal cells. Specifically, the core member Argonaut NRDE-3, which translocates from the cytoplasm to the nucleus, showed the most robust suppression in reprogramming upon its depletion. These findings suggest that nuclear RNAi machinery might be required for in vivo direct cellular reprogramming. Moreover, we also performed the ATAC-seq in FACs-sorted CCs to uncover accessibility in chromatin states during CC reprogramming. Furthermore, we established a human transdifferentiation model to reveal the role of nuclear RNAi machinery and the numerous conserved reprogramming factors identified in C. elegans during in vivo direct reprogramming.
2

Characterization of the histone chaperone FACT as a safeguard to cellular identity in C. elegans

Marchal, Iris 07 February 2024 (has links)
Direkte zelluläre Reprogrammierung wird durch den Einsatz von Transkriptionsfaktoren (TFs) erreicht, die das Zellschicksal induzieren und die Umwandlung in einen gewünschten Zelltyp direkt einleiten. Die Fähigkeit der TFs, die Identität von Zelltypen umzuprogrammieren, wird jedoch durch den zellulären Kontext bestimmt und ist durch hemmende Mechanismen eingeschränkt. Diese hemmenden Mechanismen schützen und erhalten das Zellschicksal und wirken daher als Barrieren für die Reprogrammierung. Ein Faktor, der als Barriere der Reprogrammierung fungiert, ist das Histon-Chaperon FACT. Es ist jedoch nicht bekannt, wie FACT das Zellschicksal sichert. Dieses Projekt entschlüsselt die zugrundeliegenden Reprogrammierungsmechanismen bei der Deletion von FACT in C. elegans. Das Aurora-Kinase B kodierende Gen air-2 wurde als Promotor der Reprogrammierung identifiziert. Aurora-Kinase B fördert die Umwandlungdes Zellschicksals, indem sie das Chromatin durch Phosphorylierung von H3S10-Resten umgestaltet. Darüber hinaus identifiziere ich die Histon-Acetyltransferase CBP-1 als Promotor der Reprogrammierung durch die Acetylierung von H3K18 und H3K27. Die Deletion des Cytochrom c-Oxidase - 1 kodierenden Gens cco-1, einer Untereinheit des mitochondrialen Atmungskettenkomplexes, ermöglicht eine von CBP-1 abhängige Reprogrammierung von Darmzellen zu Neuronen. Diese Beobachtung wirft ein neues Licht auf die Art und Weise, wie zelluläre Störungen, die in verschiedenen Kompartimenten durch die Deletion zellulärer Schutzmechanismen entstehen, zu ähnlichen Effekten bei der Reorganisation des Chromatins führen können, welche die Reprogrammierung vorantreiben. Darüber hinaus beschreibe ich eine mögliche Rolle der mitochondrialen Funktion bei der durch FACT-Deletion vermittelten Reprogrammierung durch die Induktion des mitochondrialen Chaperons HSP60. Schließlich kläre ich auf, wie FACT zelluläre Schicksale schützt, indem es die Integrität des Chromatins während der Transkription bewahrt. / Direct cellular reprogramming is achieved by using cell fate-inducing transcription factors (TFs) that directly induce conversion to a desired cell type. However, the ability of TFs to reprogram cells is defined by cellular context and is usually restricted by inhibitory mechanisms. Studying barriers of cellular reprogramming in vivo is a crucial step to attaining its therapeutic potential and provides important insights into the basic biology of cell fate regulation. One factor that acts as a barrier of reprogramming is the histone chaperone FACT. However, how FACT safeguards cellular fate is not yet known. Here, we unravel the underlying reprogramming mechanisms upon FACT depletion in C. elegans. To this end, an enhancer/suppressor screen with epigenetic regulators was performed. This screen identified the kinase Aurora B encoding gene air-2 as a promotor of reprogramming, promoting cell fate conversion by remodelling chromatin through the phosphorylation of H3S10. Additionally, I identify the histone acetyltransferase CBP-1 as a promotor of cell fate conversion through the acetylation of H3K18 and H3K27. Moreover, I characterize another reprogramming event where CBP-1 promotes reprogramming. Depleting the cytochrome c oxidase – 1 encoding gene cco-1, a subunit of the mitochondrial respiratory chain complex, allows for gut-to neuron reprogramming that is dependent on CBP-1. FACT and cco-1-depletion-mediated reprogramming show an overlap in reprogramming pathways. This observation sheds new light on how cellular perturbations originating in different compartments through depletion of cellular safeguards can produce similar effects on chromatin reorganization that drive reprogramming. I describe a potential role for mitochondrial function in FACT-depletion-mediated reprogramming through the induction of the mitochondrial chaperone HSP60. Lastly, I elucidate how FACT protects cellular fates through its role as a safeguard of chromatin integrity during transcription.
3

Studies on the formation of cortical circuits / The role of Ire1α in the developing neocortex. Identification of epilepsy-associated genes by ENU-induced mutagenesis in mice

Borisova, Ekaterina 15 December 2022 (has links)
Zu den höheren kognitiven Fähigkeiten des menschlichen Neokortex gehören abstraktes Denken, komplexes Verstehen, Sprache und Lernfähigkeit. Die Bildung der Großhirnrinde beginnt in der mittleren Phase der Embryogenese und ist ein hochgradig organisierter und streng regulierter Prozess. Durch asymmetrische Teilung neuronaler Stammzellen entstehen unreife Neuronen, die im Anschluss an ihre Migration ihre spezifische Position innerhalb des Cortex einnehmen. Der korrekte Erwerb der axonalen Morphologie und die Spezifizierung des Dendritenbaums bilden die Grundlage für die Etablierung der kortikalen Konnektivität. Diese morphologischen Merkmale werden durch intrinsische genetische Programme der postmitotischen Differenzierung kodiert sowie durch entwicklungsbedingte Einflüsse im extrazellulären Milieu reguliert. Das im endoplasmatischen Retikulum lokalisierte Inositol-Requiring Enzyme 1α (Ire1α) ist einer der Hauptregulatoren der entfalteten Proteinantwort. In dieser Studie zeigen wir, dass Ire1α für die Spezifizierung der Neurone der oberen Cortexschichten sowie den Erwerb der neuronalen Morphologie von zentraler Bedeutung ist, indem es mRNA-Translationsraten reguliert. Diese Arbeit zeigt auch, dass frühe und späte kortikale neuronale Vorläuferzellen sowie früh und spät geborene postmitotische Neurone unterschiedliche Translationsraten aufweisen, was auf differenzierte Anforderungen an die Proteom-Synthesemaschinerie bezüglich der Entwicklung der kortikalen Schichten hinweist. Störungen in allen Phasen der kortikalen Entwicklung, welche entweder auf Umweltfaktoren oder Genmutationen zurückzuführen sind, können zu einer abweichenden Physiologie der kortikalen Schaltkreise führen. Eine große Anzahl solcher Anomalien kann zu schweren neurologischen Erkrankungen wie Epilepsie oder komplexen Störungen mit Epilepsie wie Rett-Syndrom, Angelman-Syndrom, Mowat-Wilson-Syndrom, Lafora-Krankheit und/oder Kaufman-Okulozerebrofazial-Syndrom führen. / Higher cognitive abilities of human neocortex comprise abstract thinking, complex comprehension, language and learning capacity. Formation of the cerebral cortex begins in the middle of embryogenesis and is a tightly organized and highly regulated process. Asymmetric divisions of neuronal stem cells give rise to immature neurons that migrate to consequently assume their specific position in the cortical plate. Correct acquisition of a single-axon morphology and specification of the dendritic tree complexity sets grounds for establishment of cortical connectivity. These morphological characteristics are encoded by intrinsic genetic programs of postmitotic differentiation and regulated by developmental cues in the extracellular milieu. Endoplasmic Reticulum resident Inositol-Requiring Enzyme 1α (Ire1α) is one of the main regulators of the unfolded protein response. In this study, we demonstrate that Ire1α is pivotal for specification of upper layer cortical neurons and the acquisition of the neuronal morphology by regulating mRNA translation rates. This work also shows that early and late cortical neuronal progenitors and early- and late-born postmitotic neurons exhibit different translation rates, indicative of the specific requirements for the proteome synthesis machinery for the development of cortical layers. Disturbances of any cortical developmental milestones due to either environmental factors or gene mutations may result in aberrant physiology of cortical circuits. High number of such abnormalities can lead to serious neurological diseases such as epilepsy or complex disorders with epilepsy such as Rett syndrome, Angelman syndrome, Mowat-Wilson syndrome, Lafora disease and/or Kaufman oculocerebrofacial syndrome. One major hypothesis of the causes of epilepsy links its molecular pathology to alterations in excitation/inhibition (E/I) balance in the neuronal networks.
4

Investigating physical factors that regulate morphogenesis and fate of mouse embryonic midline sutures

Alves Afonso, Diana 04 April 2022 (has links)
Stem cells are crucial players during development, homeostasis and tissue regeneration and their interactions with the surrounding microenvironment are key to regulate stem cell fate. The skull's stem cell niches reside in the fibrous joints that connect flat bones of the skull. In the embryo, bone and sutures develop in concert to form a complex, multi-facted structure that requires interaction with multiple differentiating cell types to maintain balance between growth and differentiation. Disruption of this balance drives changes in size and shape of skull bones and can severely impact quality of life. Cranial sutures, often seen as simple extracellular matrix-rich structures bridging the rigid plates of the skull, are major actors in craniofacial morphogenesis of as they harmonize bone growth with expansion of the developing brain and participate in providing osteoblasts during repair. The complexity of the extracellular environment and the important role for sutures in skeletal development makes these niches a compelling structure to investigate how interactions with the surrounding microenvironment can modulate stem cells fate. The key role of sutures in development is highlighted by the numerous severe dysmorphisms arising from failure to maintain suture patency. The ability of the suture to respond to brain growth or trauma and the dysmophisms presented by patients with defective sutures is mediated by both biochemical and mechanical cues but the cell biology of these niches remains elusive, especially during their development. In particular, few studies have shed light on the underlying cellular behaviors behind microenvironmental regulation of cranial suture stem cell fate and what role mechanical inputs play in the establishment of this niche. In my thesis, I addressed gaps in our understanding of suture biology by characterizing the suture stem cell niche microenvironment and exploring how cell-ECM interactions serve as regulators of suture stem cell fate. Making use of various microscopy and analytical techniques I first characterized the composition of the microenvironment in a developing suture niche, such as organization of ECM, cytoskeleton and nuclear morphologies. My work builds on an incomplete transcriptional understanding of suture cell development, such that specific genetic markers are rarely useful for identifying distinct suture cell populations during its morphogenesis. By applying shape description tools to parse suture cells and test whether shape correlates to cell identity, we concluded that suture nuclei are distinct and less spherical than those of other cranial tissues. Using 'global' markers such as nuclear stains, I have also identified physical distinctions between suture nuclei and neighboring tissues, indicating that cell shape is an integral part of midline suture identity and can be used to explore coordination of fate choice and morphogenesis in this enigmatic structure. In addition, I present evidence that supports that maturation of extracellular matrix begins during early stages of suture development. In particular, embryonic midline sutures express high levels of fibrillary collagen, which contributes to the formation of a complex extracellular environment that provides the suture with physical properties distinct from those of developing bones. My work shows the presence of cell-ECM and cell-cell adhesions in the developing midline sutures, as well as a complex actin cytoskeleton that is, in part, mediated by physical stresses resultant from underlying brain expansion. Secondly, I aimed to address how perturbations in ECM composition can affect cell specification. To investigate the importance of ECM maturation in regulating suture cell fate I inhibited the function of lysyl oxidase, a collagen crosslinker, during embryonic development. Disruption of collagen crosslinking altered expression of collagen and ECM receptor encoding genes. In addition, this inhibition induced changes in the shape and size of collagen fibers in the embryonic midline suture and decreased tissue bulk stiffness relative to WT. These abnormal properties of the ECM impact tissue delineation in the cranial mesenchyme through nuclear shape analyses. This might be explained by observed changes in the composition of the nuclear envelop of suture cells as we find altered lamin concentration and localization upon lysyl oxidase inhibition. The work developed during myPhD steps away from the traditional genetic approaches used to study the embryonic suture and provides the first in-depth analysis of the physical properties of the developing midline suture at stages preceding known establishment of the niche. The various methods and analyses applied reveal a complex organization of embryonic suture ECM and its tight relationship with shape and fate in this tissue. This work serves as a foundation for future studies that can explore the mechanisms through which ECM regulates fate and development of the suture niche, and potentially skeletal development more generally.
5

Cleavage and cell fates in Phoronida

Pennerstorfer, Markus 28 July 2015 (has links)
Die vorliegende Arbeit befasst sich mit Aspekten der frühen Entwicklung der Phoronida („Hufeisenwürmer“). An drei Arten wird der Furchungsprozess untersucht (Phoronis pallida, Phoronis muelleri, Phoronis vancouverensis). Dies erfolgt sowohl mithilfe der 4D-Mikroskopie als auch anhand von immunocytochemischen Markierungen der Mitosespindeln und konfokaler Laser-Scanning-Mikroskopie. Verschiedene morphologische Merkmale des Furchungsprozesses werden quantitativ erfasst und innerhalb sowie zwischen den Arten verglichen. Die Ergebnisse zeigen eine weitgehend übereinstimmende Furchung bei P. pallida und P. muelleri Embryonen: Ab dem dritten Zellzyklus teilen sich die Blastomeren meist schräg – und alternierend dextral und sinistral – zur animal-vegetativ Achse. Dieses Muster zeigt überraschende Übereinstimmungen mit dem Muster der Spiralfurchung. Dies kann als morphologische Unterstützung molekular-phylogenetischer Befunde einer Stellung der Phoronida innerhalb der Spiralia/Lophotrochozoa interpretiert werden. Die Furchung bei P. vancouverensis unterscheidet sich von der Furchung der anderen beiden Arten; sie weist jedoch auch Unterschiede zu einer Radiärfurchung auf. Generell zeigt die Furchung aller drei Arten einen gewissen Grad an Variabilität. Anhand von in-vivo Einzelzellmarkierungen untersucht die Studie darüber hinaus das Schicksal der Blastomeren früher P. pallida Embryonen bis zu späten Gastrulationsstadien. Diese Analysen zeigen, dass die ersten beiden Furchungsteilungen durch die spätere Achse Blastoporus-Apikalplatte, jedoch in keinem konstanten Orientierungsverhältnis zur Ebene der Bilateralsymmetrie der Gastrula verlaufen. Dies unterscheidet sich von der Situation, wie sie von spiralfurchenden Tieren bekannt ist. Die Unterschiede und die beobachtete Variabilität des Furchungsprozesses werden im Licht unterschiedlicher Mechanismen der Spezifizierung von Zellschicksalen und Körperachsen bei verschiedenen Taxa der Spiralia und den Phoronida diskutiert. / This study addresses aspects of the early development of Phoronida (“horseshoe worms”). The cleavage process is analyzed for three species (Phoronis pallida, Phoronis muelleri, Phoronis vancouverensis). These investigations are performed using 4D-microscopy as well as immunocytochemical stainings of the mitotic spindle apparatuses in combination with confocal laser-scanning microscopy. Different morphological features of the cleavage process are quantified and compared within as well as between the species. The results reveal a highly consistent cleavage of P. pallida and P. muelleri embryos: from the third cell cycle onward, the blastomeres divide mostly obliquely – and alternatingly dextral and sinistral – with respect to the animal-vegetal axis. This cleavage pattern shows surprising correspondences to the pattern of spiral cleavage. The finding can be interpreted as morphological support for recent molecule-based phylogenies, which indicate a position of Phoronida within the Spiralia/Lophotrochozoa clade. The cleavage of P. vancouverensis differs from the cleavage in the other two species; however, it also shows differences to a radial cleavage pattern. In all three species, the cleavage process also involves some degree of variability. Furthermore, the study traces the cell fates of early P. pallida embryos up to the state of late gastrulation, by the use of fluorescent in-vivo single cell markings. These analyses reveal that the first two cleavage divisions both pass through the later axis blastopore-apical plate of the gastrula, yet they do not pass in a constant relationship with respect to the later plane of bilateral symmetry. This differs from the situation known from spiral cleaving animals. The differences and the encountered variability of the cleavage process are discussed with respect to different mechanisms of the specification of cell fates and body axes in different taxa of the Spiralia and the Phoronida.

Page generated in 0.0313 seconds