• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft Switching Multi-resonant Forward Converter Dc To Dc Application For Communications Equipment

Bills, David Marlin 01 January 2007 (has links)
In the field of power electronics there is always a push to create smaller and more efficient power conversion systems. This push is driven by the industry that uses the power systems, and can be realized by new semiconductor devices or new techniques. This examination describes a novel technique for a small and highly efficient method of converting relatively high DC voltage to a very low voltage for use in the telecommunications industry. A modification to the standard Forward Resonant converter results in improvements in component stress, system efficiency, response time, and control circuitry. This examination describes background information needed to understand the concepts in DC to DC power systems, "soft-switching" topologies, and control methods for these systems. The examination introduces several topologies that are currently being used, and several types that have been previously analyzed, as a starting point for the detailed analysis of the proposed converter topology. A detailed analytical analysis is given of the proposed topology, including secondary effects, and component stresses. This analysis is compared to the results found from both Pspice simulation, and a working DC to DC converter. Finally, the topology is examined for potential improvements, and possible refinements to the model described.
2

Soft-switching techniques for high-power PWM converters

Mao, Hengchun 05 October 2007 (has links)
Soft-switching techniques can significantly reduce the switching loss and switching stresses of the power semiconductor devices in a power converter. This work presents several soft-switching topologies for high power PWM converters. These new topologies achieve soft-switching functions with minimum increase of device voltage/current stresses and converter circulating energy, and thus have advantages over conventional techniques in efficiency, power density, reliability, and cost of power converters. The improved zero-current transition (ZCT) converters achieve zero-current switching at both turn-on and turn-off for all main switches and auxiliary switches. These converters significantly reduce the switching loss and stress of the power semiconductor devices, while have a voltage/current stress and circulating energy similar to a PWM converter’s. The analysis, design, and experimental verification are presented. The three-phase zero-voltage transition (ZVT) boost rectifiers/voltage source inverters are developed with simple auxiliary circuits. Unlike most existing three-phase soft-switching techniques, these new topologies achieve soft-switching functions without overcharging the resonant inductors, and realize the benefits of soft-switching operation with minimum extra main switch turn-offs and fixed auxiliary circuit control timing. The operation principles of the developed techniques are experimentally verified, and their efficiency performances are evaluated with experiments and computer simulation. The three-phase ZVT buck rectifier topologies developed in this work achieves zero-voltage turn-on for all main switches with an optimum modulation schemes and simple auxiliary circuits. The auxiliary circuits, which are connected directly to each main switch, can also absorb the parasitic resonance of the bridge arms, and keep the voltage stress of the power devices at the minimum. The analysis and simulation results are presented to verify the converter operation. New ZVT dc-link schemes for three-phase ac-dc-ac converters are investigated. With coordinated control of the ac-dc converter and the dc-ac converter, a set of simple auxiliary circuit can provide soft-switching function for all switches in both the ac-dc converter and the dc-ac converter. The power loss in the auxiliary circuit is also significantly lower than existing dc-link soft-switching schemes. Simulation with experimentally obtained device switching loss data proves that significant efficiency improvement can be achieved with the new ZVT dc-link techniques. New ZVT and ZCT techniques for three-level converters are also developed. The auxiliary circuits are not in the main power path, and allow the converters to be controlled with optimum PWM schemes. Analysis and simulation results are presented to demonstrate the operation principles and advantages of soft switching in three-level converters. / Ph. D.
3

Series Resonant Inverter for Multiple LED Lamps

Chang, Yun-Hao 30 July 2010 (has links)
This thesis proposes a high efficiency driving circuit for multiple light emitting diode (LED) lamps with dimming feature. The driving circuit consists of essentially a high-frequency half-bridge series resonant inverter with multiple output transformers, on which primary windings are connected in series, while secondary sides are loaded by LED lamps rated at different powers with different turn ratios. By controlling the frequency of the inverter, the resonant current as well as the lamp current can be regulated simultaneously. On the other hand, the LED lamps can be dimmed individually by the associated dimming switches with integral cycle control. The tactful circuit ensures a high circuit efficiency owing to less conducting losses and zero-voltage switching (ZVS) operation of the active power switches of the inverter and zero current switching (ZCS) operation of the dimming switches. Two prototype circuits designed for 60 W three RGB LED lamps and 50 W five white light LED lamps have been built and tested to verify the analytical predictions. Experimental results demonstrate that the driving circuit can operate the LED lamps at a high efficiency with a wide dimming range. The lamp power can be dimmed to 10% with frequency control, while whole dimming range can be achieved with integral cycle control. The circuit efficiency with integral cycle control is relatively higher than that with frequency control. The measured efficiencies for the two designed circuit are 93% and 90%, respectively, under the rated powers.
4

Dimmable Electronic Ballast for Multiple Cold Cathode Fluorescent Lamps

Chen, Sheng-Hui 25 July 2011 (has links)
A high-frequency half-bridge series resonant inverter with multiple output transformers is developed for driving multiple cold-cathode fluorescent lamps (CCFLs) with dimming feature. The primary sides of the transformers are connected in series with the resonant inverter to have an identical current, while the secondary sides are loaded by CCFLs with galvanic isolation to each other. To ensure a high circuit efficiency, the active power switches of the inverter are designed to be switched on at zero voltage. The resonant current of the inverter can be regulated by controlling the switching frequency of the inverter, so that all CCFLs can be dimmed simultaneously. On the other hand, the primary sides of the output transformers are associated with parallel switches to dim the CCFLs individually. These dimming switches are operated at a low frequency by integral cycle control with zero current switching (ZCS) to reduce the switching losses. The resonant circuit is tactfully designed to alleviate the variation of the resonant current caused by the switching of dimming switches. A laboratory circuit is built for driving 5 CCFLs. The intended circuit performances are confirmed by test results. The variation of the resonant current is less than 10% when the dimming switches are switching, and the measured efficiency for the circuit is 96.15% under the rated powers.
5

Pulse Frequency Modulation Zcs Flyback Converter In Inverter Applications

Tian, Feng 01 January 2009 (has links)
Renewable energy source plays an important role in energy co-generation and distribution. A traditional solar-based inverter system has two stages cascaded, which has simpler controller but low efficiency. A new solar-based single-stage grid-connected inverter system can achieve higher efficiency by reducing the power semiconductor switching loss and output stable and synchronizing sinusoid current into the utility grid. In Chapter 1, the characteristic I-V and P-V curve of PV array has been illustrated. Based on prediction of the PV power capacity installed on the grid-connected and off-grid, the trends of grid-tied inverter for DG system have been analyzed. In Chapter 2, the topologies of single-phase grid-connect inverter system have been listed and compared. The key parameters of all these topologies are listed in a table in terms of topology, power decoupling, isolation, bi-directional/uni-directional, power rating, switching frequency, efficiency and input voltage. In Chapter 3, to reduce the capacitance of input filter, an active filter has been proposed, which will eliminate the 120/100Hz low frequency ripple from the PV array's output voltage completely. A feedforward controller is proposed to optimize the step response of PV array output voltage. A sample and hold also is used to provide the 120/100Hz low frequency decoupling between the controller of active filter and inverter stage. In Chapter 4, the single-stage inverter is proposed. Compared with conventional two-stage inverter, which has two high frequency switching stages cascaded, the single-stage inverter system increases the system efficiency by utilizing DC/DC converter to generate rectified sinusoid voltage. A transformer analysis is conducted for the single-stage inverter system, which proves the transformer has no low-frequency magnetic flux bias. To apply peak current mode control on single-stage inverter and get unified loop gain, adaptive slope compensation is also proposed for single-stage inverter. In Chapter 5, a digital controller for single-stage inverter is designed and optimized by the Matlab Control Toolbox. A Psim simulation verified the performance of the digital controller design. In Chapter 6, three bi-directional single-stage inverter topologies are proposed and compared. A conventional single-stage bi-directional inverter has certain shortcoming that cannot be overcome. A modular grid-connect micro-inverter system with dedicated reactive energy processing unit can overcome certain shortcoming and increase the system efficiency and reliability. A unique controller design is also proposed. In Chapter 7, a PFM ZCS flyback inverter system is invented. By using half-wave quasi-resonant ZCS flyback resonant converter and PFM control, this topology completely eliminates switching loss. A detailed mathematical analysis provides all the key parameters for the inverter design. As the inductance of transformer secondary side get smaller, the power stage transfer function of PFM ZCS flyback inverter system demonstrates nonlinearity. An optimized PFM ZCS flyback DC/DC converter design resolves this issue by introducing a MOSFET on the secondary side of transformer. In Chapter 8, experimental results of uni-direcitonal single-stage inverter with grid-connection, bi-directional single-stage inverter and single-stage PFM ZCS flyback inverter have been provided. Conclusions are given in Chapter 9.
6

A novel induction heating system using multilevel neutral point clamped inverter

Al Shammeri, Bashar Mohammed Flayyih January 2017 (has links)
This thesis investigates a novel DC/AC resonant inverter of Induction Heating (IH) system presenting a Multilevel Neutral Point Clamped (MNPCI) topology, as a new part of power supply design. The main function of the prototype is to provide a maximum and steady state power transfer from converter to the resonant load tank, by achieving zero current switching (ZCS) with selecting the best design of load tank topology, and utilizing the advantage aspects of both the Voltage Fed Inverter (VFI) and Current Fed Inverter (CFI) kinds, therefore it can considered as a hybrid-inverter (HVCFI) category . The new design benefits from series resonant inverter design through using two bulk voltage source capacitors to feed a constant voltage delivery to the MNPCI inverter with half the DC rail voltage to decrease the switching losses and mitigate the over voltage surge occurred in inverter switches during operation which may cause damage when dealing with high power systems. Besides, the design profits from the resonant load topology of parallel resonant inverter, through using the LLC resonant load tank. The design gives the advantage of having an output current gain value of about Quality Factor (Q) times the inverter current and absorbs the parasitic components. On the contrary, decreasing inverter current means decreasing the switching frequency and thus, decreasing the switching losses of the system. This aspect increases the output power, which increases the heating efficiency. In order for the proposed system to be more reliable and matches the characteristics of IH process , the prototype is modelled with a variable LLC topology instead of fixed load parameters with achieving soft switching mode of ZCS and zero voltage switching (ZVS) at all load conditions and a tiny phase shift angle between output current and voltage, which might be neglected. To achieve the goal of reducing harmonic distortion, a new harmonic control modulation is introduced, by controlling the ON switching time to obtain minimum Total Harmonic Distortion (THD) content accompanied with optimum power for heating energy.
7

Análise, desenvolvimento e projeto de um conversor duplo Forward on-off zcs para aplicação em fontes chaveadas isoladas

Andrade, Alexandre Motta de 10 May 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / A complete study of a topology resulting from a combination of two Forward structures, attached to the same magnetic core of a transformer and operating as a Full-Bridge converter is presented. In order to reduce the switching losses and the electromagnetic interference, a soft commutation cell that provides ZCS commutation of all the switches is implemented. This converter limits the current on the main switches at the load current because diverts the sinusoidal half cycle to a auxiliary switch. This way, a new Double Forward On-Off ZCS was developed. / Um estudo completo de uma topologia, resultante de uma combinação entre duas estruturas Forward, acopladas ao mesmo núcleo magnético de um transformador, e operando como um conversor Full-Bridge, é apresentado. Com o objetivo de reduzir as perdas por chaveamento e a interferência eletromagnética, uma célula de comutação não dissipativa, que fornece uma comutação ZCS para todas as chaves do conversor é implementada. Este conversor limita a corrente nas chaves principais ao valor da corrente nominal, pois desvia o semiciclo senoidal da corrente ressonante para uma chave auxiliar. Deste modo, um novo conversor Duplo Forward On-Off ZCS é obtido. / Mestre em Ciências
8

Dvojčinný kvazirezonanční DC/DC měnič s transformátorem / Push-pull quasi-resonant DC/DC converter with a transformer

Dvořák, Petr January 2020 (has links)
This diploma thesis deals with analysis of function and subsequent construction of a quasi-resonant DC / DC converter 300 V / 50 V for an output of about 1.5 kW. The aim of this work is to test and describe the behavior of an experimental converter at various operating parameters. In the theoretical part, resonant circuits are described, as well as our connection of the resonant converter. Based on the used topology and the simulated behavior of the converter, the individual components of the power circuit and its control and excitation circuit are designed in Chapters 4 and 5. The sixth chapter deals with the construction and testing of the converter, including a description of its behavior. The last chapter contains technical documentation.
9

Digital-Based Zero-Current Switching (ZCS) Control Schemes for Three-Level Boost Power-Factor Correction (PFC) Converter

Lee, Moonhyun 11 August 2020 (has links)
With the increasing demands on electronic loads (e.g. desktop, laptop, monitor, LED lighting and server) in modern technology-driven lives, performance of switched-mode power supply (SMPS) for electronics have been growing to prominence. As front-end converters in typical SMPS structure, ac-dc power-factor correction (PFC) circuits play a key role in regulations of input power factor, harmonics and dc output voltage, which has a decisive effect on entire power-supply performances. Universal ac-line and low-power system (90–264 Vrms, up to 300–400 W) is one of the most common power-supply specifications and boost-derived PFC topologies have been widely used for the purpose. In order to concurrently achieve high efficiency and low-cost system in the PFC stage, zero-current switching (ZCS) control schemes are highly employed in control principles. Representative schemes are discontinuous conduction mode (DCM) and critical conduction mode (CRM). Both modes can realize ZCS turn-on without diode reverse recovery so that low switching losses and low-cost diode utilizations are obtainable. Among various boost-family PFC topologies, three-level boost (TLB) converter has generated considerable research interest in high-voltage high-power applications. It is mainly due to the fact that the topology can have halved component voltage stresses, improved waveform qualities and electromagnetic interference (EMI) from phase interleaved continuous conduction mode (CCM) operations, compared to other two-level boost PFC converters. On the other hand, in the field of universal-line low-power applications, TLB PFC has been thoroughly out of focus since doubled component counts and increased control complexity than two-level topologies are practical burden for the low-cost systems. However, recent researches on TLB PFC with ZCS control schemes have found that cost-competitiveness of the topology is actually comparable to two-level boost PFC converters because the halved component voltage stresses enable usage of low voltage-rating components of which unit prices are cheaper than higher-rating ones. Based on the justification, researches on ZCS control schemes for TLB PFC have been conducted to get enhanced waveform qualities and performance factors. Following the research stream, a three-level current modulation scheme that can be adopted in both DCM and CRM is proposed in Chapter 2 of this dissertation. Main concept of the proposed current modulation is additional degree-of-freedom in current-slope shaping by differentiating on-times of two active switches, which cannot be found from any other single-phase boost-derived PFC topologies. Using the multilevel feature, proposed operations in one switching period consist of three steps: common-switch on-time, single-switch on-time and common-switch off-time. The single-switch on-time step is key design factor of the proposed modulation that can be utilized either in fixed or adjustable form depending on control purpose. Based on the basic modulation concept, three-level CRM control scheme, adjustable three-level DCM control scheme, and spread-spectrum frequency modulation (SSFM) with adjustable three-level DCM scheme are proposed in Chapter 3–5, respectively. In each chapter, implemented control scheme aims to improve different performance factors. In Chapter 3, the proposed three-level CRM scheme uses increased single-switch on-time period to reduce peak inductor current and magnitude of variable switching frequency. It is generally accepted fact that CRM operations suffer from high switching losses and poor efficiency at light load due to considerable increment of switching frequency. Thus, efficiency improvement effect by the proposed CRM scheme becomes remarkable as load condition goes lighter. In experimental verifications, maximum improvement is measured by 1.2% at light load (20%) and overall efficiency is increased by at least 0.4% all over the load range. In Chapter 4, three-level DCM control scheme adopts adjustable single-switch on-time period in fixed switching-frequency framework. The purpose of adjustable control scheme is to widen the length of non-zero inductor current period as much as possible so that discontinued current period and high peak current of DCM operations can be minimized. Experiment results show that, compared to conventional two-level DCM control, full-load peak inductor currents are reduced by 20.2% and 17.1% at 110 and 220 Vrms input voltage conditions, respectively. Moreover, due to turn-off switching energy decrements by the turn-off current reductions, efficiency is also improved by at least 0.4% regardless of input voltage and load conditions. In Chapter 5, a downward SSFM technique is developed first for DCM operations of boosting PFC converters including two-level topologies. This chapter aims to achieve significant reduction of high differential-mode (DM) EMI amplitudes from DCM operations, which is major drawback of DCM control. By using the simple linearized frequency modulation, peak DM EMI noise at full load condition is reduced by 12.7 dBμV than conventional fixed-frequency DCM control. On top of the proposed SSFM, the adjustable three-level DCM control scheme in Chapter 4 is adopted to get further reductions of EMI noises. Experimental results prove that the collaborations of SSFM and adjustable DCM scheme reduce the EMI amplitudes further by 2.5 dBμV than the result of SSFM itself. The reduced EMI amplitudes are helpful to design input EMI filter with higher cut-off frequency and smaller size. Different from two-level boosting PFC converters, TLB PFC topology has two output capacitors in series and inherently suffers from voltage unbalancing issue, which can be noted as topological trade-off. In Chapter 6, two simple but effective voltage balancing schemes are introduced. The balancing schemes can be easily built into the proposed ZCS control schemes in Chapter 3–5 and experimental results validate the effectiveness of the proposed balancing principles. For all the proposed control schemes in this dissertation, detailed operation principles, derivation process of key equations, comparative analyses, implementation method with digital controller and experimental verifications with TLB PFC prototype are provided. / Doctor of Philosophy / Electronic-based devices and loads have been essential parts of modern society founded on rapid advancements of information technologies. Along with the progress, power supplying and charging of electronic products become routinized in daily lives, but still remain critical requisites for reliable operations. In many power-electronics-based supplying systems, ac-dc power-factor correction (PFC) circuits are generally located at front-end to feed back-end loads from universal ac-line sources. Since PFC stages have a key role in regulating ac-side current quality and dc-side voltage control, the importance of PFC performances cannot be emphasized enough from entire system point of view. Thus, advanced control schemes for PFC converters have been developed in quantity to achieve efficient operations and competent power qualities such as high power factor, low harmonic distortions and low electromagnetic interferences (EMI) noises. In this dissertation, a sort of PFC topologies named three-level boost (TLB) converter is chosen for target topology. Based on inherent three-level waveform capability of the topology, multiple zero-current switching (ZCS) control schemes are proposed. Compared to many conventional two-level PFC topologies, TLB PFC can provide additional degree-of-freedom to current modulation. The increased control flexibility can realize improvements of various waveform qualities including peak current stress, switching frequency range, harmonics and EMI amplitude. From the experimental results in this dissertation, improvements of waveform qualities in TLB PFC with the proposed schemes are verified with comparison to two-level current control schemes; in terms of efficiency, the results show that TLB PFC with the proposed schemes can have similar converter efficiency with conventional two-level boost converter in spite of increased component counts in the topology. Further, the proposed three-level control schemes can be utilized in adjustable forms to accomplish different control objectives depending on system characteristics and applications. In each chapter of this dissertation, a novel control scheme is proposed and explained with details of operation principle, key equations and digital implementation method. All the effectiveness of proposals and analyses are validated by a proper set of experimental results with a TLB PFC prototype.
10

Soft Switched Multi-Phase Tapped-Boost Converter And Its Control

Mirzaei, Rahmatollah 06 1900 (has links)
Boost dc-to-dc converters have very good source interface properties. The input inductor makes the source current smooth and hence these converters provide very good EMI performance. On account of this good property, the boost converter is also the preferred converter for off-line UPF rectifiers. One of the issues of concern in these converters is the large size of the storage capacitor on the dc link. The boost converter suffers from the disadvantage of discontinuous current injected to the load. The size of the capacitor is therefore large. Further, the ripple current in the capacitor is as much as the load current; hence the ESR specification of the tank capacitor is quite demanding. This is specially so in the emerging application areas of automotive power conversion, where the input voltage is low (typically 12V) and large voltage boost (4 to 5) are desired. The first part of this thesis suggests multi-phase boost converter to overcome the disadvantages of large size storage capacitor in boost converter. Comparison between the specification of single stage and multi-stages is thoroughly examined. Besides the average small signal analysis of N converters in parallel and obtaining an equivalent second order system are discussed. By paralleling the converters the design of closed loop control is a demanding task. To achieve proper current sharing among the stages using current control method is inevitable. Design and implementation of closed loop control of multi-phase boost converter both in analog and digital is the topic of next part of the thesis. Comparison between these two approaches is presented in this part and it will be shown that digital control is more convenient for such a topology on account of the requirement of synchronization, phase shifted operation, current balancing and other desired functions, which will be discussed later in detail. A new direct digital control method, which is simple and fast, is developed. Two different realizations with DSP controller and FPGA controller are considered. In the last part of the thesis a novel soft switching circuit for boost converter is presented. It provides Zero Voltage Switching (ZVS) for the main switch and Zero Current Switching (ZCS) for the auxiliary switch. The paper presents the idealized analysis giving all the circuit intervals and the equations necessary for the design of such a circuit. The proposed soft switching circuit is particularly suited for the tapped-inductor boost circuit with a minimum number of extra components. Extension of the method to tapped inductor boost converter addresses the application of Zero Voltage Transition (ZVT) to high conversion ratio converters. Extension of the method to multiphase boost converter shows that with less number of auxiliary switches soft switching operation can be achieved for all interleaved switching devices. Several laboratory prototype boost converters have been built to confirm the theoretical results and design methods are matching with both simulation and experimental results.

Page generated in 0.0978 seconds