Spelling suggestions: "subject:"zinc oxide."" "subject:"zinc óxide.""
151 |
Chemically deposited CdS-Cu(x)S solar cellsJaber, Nasuh Kamel January 1979 (has links)
The physical properties of cadmium sulfide and zinc oxide thin films, deposited from aqueous solution, were investigated using electron and x-ray diffraction techniques. The conventional method and two new methods were used to deposit cadmium sulfide thin films. Moreover, a new method for the deposition of zinc oxide was devised. Experiments were conducted on the cadmium sulfide thin films in order to make their semiconducting properties favorable for use as solar cells. Cds-Cu(x)S solar cells were fabricated, and their I-V characteristic curves plotted, using an X-Y recorder. The photovoltaic effects in chemically deposited Cds films have been clearly demonstrated.
|
152 |
Nanoclusters of doped ZnO and core-shell iron /Antony, Jiji. January 1900 (has links)
Thesis (Ph. D., Physics)--University of Idaho, August 2006. / Major professor: You Qiang. Includes bibliographical references (leaves 119-137). Also available online (PDF file) by subscription or by purchasing the individual file.
|
153 |
The Role of Crystallographic Texture in Achieving Low Friction Zinc Oxide Nanolaminate FilmsMojekwu, Nneoma 12 1900 (has links)
Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101 ̅3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ~0.25, while the friction coefficient doubled to ~0.5 with increasing contribution of surface (101 ̅3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.
|
154 |
Wide band gap nanomaterials and their applicationsZhang, Shaolin, 張少林 January 2009 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
|
155 |
Laplace transform deep level transient spectroscopic study on PLD grown ZnOHo, Lok-ping, 何樂平 January 2015 (has links)
The fundamental physics and techniques employed in Laplace transform deep level transient spectroscopy (L-DLTS) are reviewed. A Laplace-DLTS system has been constructed. The high resolving power of this system has been demonstrated experimentally.
The L-DLTS system was applied to characterize the defects in undoped n-type ZnO thin film grown by the pulsed laser deposition (PLD) method. A 0.3 eV deep trap has been identified. The formations of Ec-0.39eV and Ec-0.20eVcan be enhanced when the sample surface is seriously damaged by high temperature annealing.AnEc-0.25eV trap is identified in the freshly grown samples, but would disappear after the storage of 3 months.
Copper doped n-type ZnO thin film samples with low carrier concentration (n~〖10〗^16 〖cm〗^(-3)) were investigated by using both conventional and Laplace DLTS techniques. Positive DLTS signal peaks were detected that are suspected to be contributed by the minority carrier (hole carrier) emission. A physics model involving the inversion layer of a metal-insulator-semiconductor contact has been invoked to interpret the hole carrier concentration existing near the metal-semiconductor interface. Expression for the defect concentration is determined as a function of the temperature of DLTS peaks. AnEv+0.6eV defect with high concentration (N_T~〖10〗^17 〖cm〗^(-3)) was detected. The concentration of Ev+0.6eVcan be enhanced when the annealing temperature was increased from 750 to 900 degree C. / published_or_final_version / Physics / Master / Master of Philosophy
|
156 |
The role of the nano-environmental interface in ZnO and CeO2 nanoparticle ecotoxicologyWalker, Nicholas David Leyland January 2012 (has links)
An increase in nanotechnology has seen an associated rise in nanoparticles released into the environment. Their potential toxicity and exposure to humans and the environment, the field of nanoecotoxicology, is not yet well understood. The interactions at the nanoparticle surface will play a fundamental role in the nanoparticle behaviour once released into the environment. This study aims to characterise the particle surface interaction, determining key parameters influential in the nanoparticle fate. Evanescent Wave Cavity Ring Down Spectroscopy techniques have been applied to study molecular interactions at the silica-water charged interface. The adsorption of the electronic spectrum of Crystal Violet has demonstrated the formation of a monolayer with different binding site orientation at the interface. The binding affinity for the chromophore was calculated as 29.15 ± 0.02 kJmol-1 at pH 9 and this was compared with other interface structures involving both inorganic and organic components. The study of the model interface was extended to the properties of CeO2 nanoparticles, where the surface charge density was determined to be 1.6 ± 0.3 e- nm-2.The nanoparticle surface charge controls the suspension stability which was measured for CeO2 nanoparticles giving a stability half-life of 330 ± 60 hours in pure water, and 3.6 ± 0.6 hours in ISOFish water. Studies were extended to the toxicity of ZnO nanoparticles. An assay was developed to quantify the photo-electron production for nanoparticles exposed to UV light both in deionised water and soil suspensions with a photo-radical production yield of 19 ± 2 % and an electron production of 709 e-s-1np-1 for a 100 mgL-1 suspension. The species-specific photo-radical assay was subsequently used to determine the rate of ZnO nanoparticle dissolution in water and soil suspensions. Comparable dissolution rates in complex cell growth media were also measured, detecting total zinc by Inductively Coupled Plasma Atomic Emission Spectroscopy, with comparable dissolution rates derived.
|
157 |
Bacterial-nanoparticle interactionsMcQuillan, Jonathan January 2010 (has links)
Bionanotechnology is an intersection between biology and nanotechnology, a field in which novel applications for very small materials are being realised at an alarming rate. Nanoparticles have 3 dimensions that can be measured in nanometers, their small size conferring upon them different properties from individual atoms or the bulk material. The interactions between these unique materials and microorganisms are often toxic, thus have been exploited for antimicrobial applications. However, there is a considerable paucity of data for the underlying molecular mechanisms. This study has been carried out to investigate the interactions that occur between nanoparticles and bacteria with the objective of identifying these toxicological mechanisms and novel nanoparticle effects, using the model Gram negative organism Escherichia coli K12. This study has identified metal nanoparticles that are a superior vehicle for the delivery of toxic metal ions to E. coli. The nanoparticles associate with the bacterial surface, but do not cross the cell wall. They then dissolve, releasing a concentration of metal ions that accumulate at the bacterial-nanoparticle interface, enhancing the antibacterial efficacy compared to the concentration of metal ions in the bulk solution phase. Measurement of the whole transcriptome response to silver nanoparticles in comparison to the silver ion indicates that the different modes of ion delivery may induce a differential stress response. Moreover, this data identifies molecular mechanisms that are involved in the toxicity of this metal that is now becoming increasingly prevalent in society. The dissolution based toxic effects of zinc oxide nanoparticles are augmented by an interaction with ultra-violet light, offering an alternative mode for nanoparticle toxicity.
|
158 |
Controlled synthesis of ZnO nanowires towards the fabrication of solar cellsYu, Dongshan 30 June 2009 (has links)
In recent years, quasi-one-dimensional materials have attracted a lot of research attention due to their remarkable properties, and their potential as building blocks for nanoscale electronic and optoelectronic devices. A modified chemical vapor deposition (CVD) method has been used to synthesize ZnO nanowires. Electron microscopy and other characterization techniques show that nanowires having distinct morphologies when grown under different conditions. The effects of reaction parameters including reaction time, temperature, carrier gas flow rate, substrates and catalyst material upon the size, shape, and density of ZnO nanowire arrays have been investigated. Excitonic solar cells —including Gratzel-type cells, organic and hybrid organic/inorganic solar cells—are promising devices for inexpensive, large-scale solar energy conversion. Hybrid organic/inorganic solar cells are made from composites of conjugated polymers with nanostructure metal oxides, in which the polymer component serves the function of both light absorber and hole conductor, and the ZnO nanowire arrays act as the electron conductors. Organic solar cells have been fabricated from environmentally friendly water-soluble polymers and ZnO nanowire arrays.
|
159 |
Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics. / 基於自旋電子學應用的過渡金屬摻雜氧化鋅納米晶之合成與表徵 / CUHK electronic theses & dissertations collection / Ji yu zi xuan dian zi xue ying yong de guo du jin shu shan za yang hua xin na mi jing zhi he cheng yu biao zhengJanuary 2007 (has links)
A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. / Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. / Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. / The crystal growth strategy demonstrated in this work not only provides a more convenient approach to directly tailor magnetic properties of advanced multifunctional spintronic materials on a nanometer scale but also contributes to a deeper insight into the microscopic origin of magnetism in wide-band-gap oxide DMSs. / Wang, Xuefeng. / "August 2007." / Adviser: J. B. Xu. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1230. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
|
160 |
Investigations into the use of nano-based antimicrobial and osteoconductive coatings for bone implantsMemarzadeh, Kaveh January 2014 (has links)
Objectives: Orthopaedic and dental implants are prone to frequent infections. This can lead to detrimental and often irreversible outcomes for many patients. The objective of this study was to develop a novel system using zinc oxide nanoparticles (nZnO) as a coating material that inhibits both bacterial adhesion / growth and promotes osteoblast growth. Methods and Results: Initially bacteria (S. aureus, E. coli, S. epidermidis and P. aeruginosa) were exposed to different concentrations of zinc oxide nanoparticulate suspensions (250 μg/mL, 500 μg/mL, 1000 μg/mL and 2500 μg/mL); with the higher concentrations of the suspensions demonstrating significant bactericidal effects. A novel electrohydrodynamic atomization coating technique (EHDA) was used to deposit mixtures of nZnO and nano-hydroxyapatite (nHA) onto the surface of glass samples (1 cm2). Exposure of the coated samples to phosphate buffered saline (PBS) and adult bovine serum (ABS) and measurement of bactericidal activity demonstrated superior antimicrobial activity for 100% and 75% nZnO composite coated samples. Lactate dehydrogenase (LDH) release from osteoblast-like cells (UMR-106 and MG-63) exposed to both nano-TiO2 and nano-ZnO nanoparticulate suspension supernatants indicated minimal toxicity. Nano-ZnO coated samples did not elicit LDH release with an increase in proliferation and viability of cells was observed. Scanning electron microscopy (SEM) and optical microscopy indicated that all cell types used (mesenchymal stem cells and osteoblast-like cells) were able to maintain their normal morphological state when adhered to the surface of the nano-coated material. Further studies as regards to patterned coated samples showed an exclusive adhesion selection by osteoblast-like cells to nZnO patterned regions that needs to be further investigated. Conclusion: ZnO NPs provide an antimicrobial and biocompatible coating material for medical and dental bone implants.
|
Page generated in 0.0508 seconds