• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 51
  • 51
  • 21
  • 19
  • 18
  • 17
  • 14
  • 14
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Study of Au(III) Compounds and their Interaction with Zinc Finger Proteins

Spell, Sarah 01 January 2014 (has links)
Gold compounds have been used in medicine dating back as early as 2500 BC. Over the years gold(I) and gold(III) compounds have been used and designed to target rheumatoid arthritis, cancer, and viral diseases. New drug targets have been found for gold compounds that give insight into their mechanisms of action. Here we focus on the synthesis of Au(III) compounds designed to selectively target zinc finger (ZF) proteins. ZF proteins exhibit a variety of functions, including transcription, DNA repair, and apoptosis. Displacement of the central zinc ion, along with mutation of coordinated amino acids can result in a loss of biological function. Synthesis of complexes that selectively target zinc finger proteins, in turn inhibiting DNA/ZF interactions and therefore resulting in loss of protein function, is of great interest. Of particular interest here is the Cys3His (Cys = cysteine, His = histidine) HIV nucleocapsid zinc finger protein, NCp7. NCp7 is involved in multiple steps of the HIV life cycle, thus making it a desirable drug target. Previous studies from our group show platinated nucleobases such as [Pt(dien)(9-EtG)]2+ (dien = diethylenetriamine; 9-EtG = 9-ethylguanine) to stack effectively in a non-covalent manner with tryptophan of the C-terminal finger of HIV Nucleocapsid, NCp7(F2), a key residue involved in nucleic acid recognition. Due to the isoelectronic and isostructural relationship of Au(III) to Pt(II), we have expanded this system to Au(III)-(nucleobase/N-heterocycle) compounds. Novel Au(III)(dien)(N-heterocycle) compounds, including the first Au(III)N3(N-purine) examples, were synthesized. As previously reported for [AuCl(dien)]Cl2, these compounds exhibit pH dependency of the 1H NMR chemical shifts of the dien ligand. The acidity of the dien ligand is affected by the nature of the fourth ligand as a leaving group. The presence of an inert nitrogen donor, compared to that of the more labile Cl-, as the leaving group stabilizes the Au(III) metal center towards reduction, resulting in significant enhancement of π−π stacking interactions with tryptophan relative to platinum(II) and palladium(II) compounds. The presence of a more inert N-donor as the leaving group slows down the reaction with the sulfur-containing amino acid N-Acetylmethionine (N-AcMet); essentially no reaction was observed for the Au(III)-N-heterocycle compounds. All compounds react readily with N-Acetylcysteine (N-AcCys), however lack of N-heterocycle ligand dissociation indicates, to our knowledge, the first long-lived N-heterocycle-Au-S species in solution. Electrospray ionization mass spectrometry (ESI-MS) studies with NCp7(F2) indicate [Au(dien)(DMAP)]3+ (DMAP = 4-dimethylaminopyridine) to be the least reactive of the Au(III) compounds studied, showing the presence of intact NCp7(F2) zinc finger at initial reaction times. Reactivity of the Au-compounds was compared with that of Sp1(F3), a Cys2His2 ZF; in contrast, no intact ZF was observed for any of the compounds studied, suggesting the mode of action of these compounds is dependent on the nature of the zinc binding core. ESI-MS studies were expanded to that of the full HIV NCp7 zinc finger. [Au(dien)(9-EtG)]3+ reacts quickly with NCp7, resulting in immediate zinc ejection and replacement with up to three gold ions. Unlike with [Au(dien)(DMAP)]3+, no intact NCp7 was observed. Addition of [Au(dien)(9-EtG)]3+ to preformed NC-SL2 complex results in release of free RNA; based on EMSA (electrophoretic mobility shift assay) studies, [Au(dien)(9-EtG)]3+ disrupts the NCp7-RNA complex with an IC50 of ~450 µM. It is possible that this HIV nucleocapsid-nucleic acid antagonism may result in a loss of viral activity.
22

Investigating the RNA Binding Domains of MBNL1 and the Alternative Splicing Motifs They Recognize

Purcell, Jamie, Purcell, Jamie January 2012 (has links)
Muscleblind-like 1 (MBNL1) is a ubiquitously expressed RNA binding protein that regulates the alternative splicing of a variety of transcripts. In Myotonic Dystrophy (DM) aberrant cellular localization of MBNL1 results in disease-associated mis-splicing of several MBNL1 target pre-mRNAs. Due to its role in DM pathogenesis, MBNL1 has been a topic of intense study for the last decade, however many open mechanistic questions remain regarding how MBNL1 recognizes RNA substrates to mediate splicing. The RNA recognition motif for MBNL1, 5'-YGCY-3', was defined herein. This motif was used to identify novel MBNL1 binding sites within regulated transcripts and create synthetic MBNL1-regulated splicing reporters. MBNL1 contains four zinc finger (ZF) RNA binding domains arranged into two pairs of two ZFs. A comprehensive, combinatorial mutagenic study of MBNL1 was conducted to determine the role of each ZF in RNA binding and splicing activity. Functional analysis of the mutant proteins in cellular splicing assays and assessment of RNA binding activity demonstrated that the ZF pairs (i.e. ZF1-2 or ZF3-4) do not have equivalent activity. The ZF1-2 pair is responsible for MBNL1's high affinity RNA binding and splicing activity, whereas the ZF3-4 pair has reduced affinity for RNA and impaired ability to regulate splicing of some transcripts. Hierarchical clustering analysis revealed that two distinct classes of MBNL1-regulated splicing events exist within the small set of splicing events examined. For Class II splicing events the binding and splicing activity for the ZF mutants correlated well. However, for Class I events there was no significant correlation between RNA binding and splicing activity. For pre-mRNAs in the latter class it appears that MBNL1 exerts surprisingly robust splicing activity in the absence of strong RNA binding, suggesting that MBNL1 may be recruited to some pre-mRNA substrates through protein-protein interactions. This study provides the first demonstration that functionally distinct classes of MBNL1-mediated splicing events exist in terms of requirements for different ZFs and the importance of RNA binding. This dissertation includes previously published and unpublished co-authored material as well as recently co-authored material that has been submitted for publication.
23

ZBP-89 expression in hepatocellular carcinoma and its interaction with mutant p53. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Zhang, Zhiyi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves ). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
24

NMR studies of the ADR1 zinc finger transcription factor /

Schaufler, Lawrence E. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 202-216).
25

Evidence for the involvement of the zinc cluster protein Asg1p in the transcriptional regulation of some stress response genes in Saccharomyces cerevisiae

Drolet, Jessica Ann. January 2007 (has links)
Saccharomyces cerevisiae has developed mechanisms in order to survive harsh environmental conditions. This species responds to stresses such as ethanol, heat, and weak acid exposure via two well-characterized stress response pathways. These typically involve either the Hsf1p or the Msn2/4p transcriptional regulators. Recently, our lab has begun to characterize a member of the zinc cluster protein family: Asg1p (Activator of Stress Genes, systematic name: YIL130W), which is presumed to stimulate stress response genes independently of the Hsflp and Msn2/4p pathways. Previous work has revealed five target genes of Asg1p (HSP30, STP4, YER130C, TPO2, YRO2) thought to be involved in this novel stress response pathway. In this study, we attempted to better characterize the role of Asg1p and its target genes during stress induction. We first determined if the induction of certain Asg1p target genes by stress is strain specific. HSP30 induction by heat shock is specific to the W303 strain as shown by primer extension analysis. We then generated the deletion strains Deltaasg1 and Astp4 in W303. We observed a loss of induction of HSP30 in the Deltaasg1 deletion strain when cells were exposed to ethanol. This led us to believe that Asg1p does play a role in the stress response pathway. Also, we attempted to globally define the target sites of Asg1p in vivo on a genome-wide scale by combining Chromatin Immuno Precipitation with microarrays (ChIP-chip). We identified eight putative Asg1p target genes: YRO2, HSP78, ZRT2, ZRT1, MSN4, STP4, TPO2, and HSP30.
26

The p53-induced gene wig-1 : regulation of expression and role in embryonic development /

Wilhelm, Margareta, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.
27

ZNF451 is a novel binding partner of the bHLH transcription factor E₁₂

Zhou, Shengli. January 2008 (has links)
Thesis (M.S.)--University of Toledo, 2008. / "In partial fulfillment of the requirements for the degree of Master of Science in Biomedical Sciences." Title from title page of PDF document. Bibliography: pages 49-62.
28

Mediation of pleiotropic drug resistance by zinc cluster transcriptional regulators in Saccharomyces cerevisiae

Patel, Reena, January 2009 (has links)
Thesis (M.Sc.). / Written for the Division of Experimental Medicine. Title from title page of PDF (viewed 2009/06/30). Includes bibliographical references.
29

Characterizing the function of extracellular protein kinase A in angiogenesis and the effects of Zfp68 and pharmacological inibitors in adipogenesis

Szkudlarek-Mikho, Maria. January 2010 (has links)
Dissertation (Ph.D.)--University of Toledo, 2010. / "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science." Title from title page of PDF document. "A Dissertation entitled"--at head of title. Bibliography: p. 54-56, 81-82, 113-128.
30

Evidence for the involvement of the zinc cluster protein Asg1p in the transcriptional regulation of some stress response genes in Saccharomyces cerevisiae

Drolet, Jessica Ann. January 2007 (has links)
No description available.

Page generated in 0.0654 seconds