• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 118
  • 96
  • 77
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 7
  • Tagged with
  • 873
  • 172
  • 164
  • 126
  • 123
  • 92
  • 92
  • 77
  • 77
  • 69
  • 62
  • 61
  • 59
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Characteristics of a thermal plasma containing zirconium tetrachloride : a thesis

Kyriacou, Andreas. January 1982 (has links)
No description available.
222

The dissolution of niobium and zirconium in liquid steel

Sismanis, Panagiotis G., 1959- January 1987 (has links)
No description available.
223

Sublimation/deSublimation separation of ZrF4 and HfF4

Postma, Jakkie January 2018 (has links)
This dissertation details research aimed at the separation of Zr and Hf in the tetrafluoride form. Separation of ZrF4 and HfF4 was achieved using sublimation followed by desublimation. The separation involves the sublimation of the tetrafluorides in an inert atmosphere under controlled parameters. The sublimed mass (700 C to 800 C) diffuses into nitrogen which then flows across a water-cooled desublimer (annulus) with the aim of desubliming the one metal fluoride in preference to the other. This implies that separation was achieved in both the sublimer and the desublimer, due to differences in both the sublimation and desublimation rates. The aim was for the sublimer residue to be Hf-rich and the desublimer content to be Zr-rich. The Zr/Hf content was determined by means of ICP-OES analysis. It must be noted that the work reported in this thesis is based on only a first sublimation step. The reason for this is that the equipment used was on laboratory scale and that the mass collected from the desublimer was not sufficient to allow a second or third step to be carried out. Little information was available in the literature on the sublimation separation of Zr and Hf, especially in the fluoride form, most of it being sublimation under vacuum conditions. On an industrial scale, only vacuum sublimation of ZrF4 has been introduced into the industry, and no information was found for sublimation of ZrF4 in an inert atmosphere on an industrial scale. There was also limited information on the sublimation rate of ZrF4 or HfF4 in an inert atmosphere. In the process described in this dissertation, optimal temperature selection is crucial since low temperatures result in a low sublimation rate, and high temperatures not only increase the level of impurities in the sublimed product, but also increase the cost of construction material and energy consumption. The aim was to determine the experimental conditions, i.e. sublimation time, temperature and position on the desublimer, which will provide optimal separation conditions. These conditions must, however, be compared with the operating cost, as this will be higher at a higher temperature and for longer sublimation runs. / Dissertation (MEng)--University of Pretoria, 2018. / Chemical Engineering / MEng / Unrestricted
224

High Temperature Oxidation and Nitriding Kinetics of Zirconium

Rosa, Casimir 06 1900 (has links)
<p> An investigation is reported on the oxidation properties of alpha-zirconium at 850°C and beta-zirconium at 950°C in oxygen for periods extending to 400 hr. and 100 hr. , respectively. Nitriding kinetics of zirconium in the range of 750° to 1000°C up to 200 hr. were investigated. The kinetics wen determined by volumetric and gravimetric techniques and may be represented by' a parabolic relationship after a period of more rapid oxidation. The uptakes of oxygen or nitrogen were consistent with the mathematical evaluations based on multi-phase diffusion models. Two diffusion models were advanced; one based upon differential and the other upon integral solutions of diffusion equations. It was possible to separate quantatively the oxygen or nitrogen partitions in the scale, alpha and beta phases of zirconium. </p> <p> The diffusivity of nitrogen in alpha-zirconium was determined by using transverse microhardness measurements. The diffusivity is: D = 0.15 exp (-54100/RT)cm/sec^2 for the temperature range of 750°- l000°C. </p> <p> The influence of oxygen-nitrogen atmospheres on the scaling rate of alpha-zirconium at 850°C was investigated. Small additions of either gas to the other increased the sealing rate. A definite breakaway point was observed in the scaling kinetics and the time interval to the transition point varied with the relative amounts of nitrogen to oxygen. </p> <p> Scaling rates of zirconium at 850° and 950°C in the oxygen-water vapor atmospheres initially obeyed to a good approximation a parabolic relationship which was followed by a much faster scaling rate. </p> / Thesis / Doctor of Philosophy (PhD)
225

Studies in the UO₂-ZrO₂ system /

Wright, Thomas Rea January 1965 (has links)
No description available.
226

Anisotropic mechanical behaviour of a Zr-Sn-Nb-Mo alloy

Salinas Rodríguez, Armando January 1984 (has links)
No description available.
227

Microtechniques in Pb-U dating of Moroccan zircons.

Hull, Marylee Witner January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Bibliography: leaves 26-27. / M.S.
228

Zirconium-based MOFs and their biodegradable polymer composites for controlled and sustainable delivery of herbicides

29 July 2022 (has links)
Yes / Adsorption and controlled release of agrochemicals has been studied widely using different nanomaterials and a variety of formulations. However, the potential for application of high surface-area metal-organic frameworks (MOFs) for the controlled release of agrochemicals has not been thoroughly explored. Herein, we report controlled and sustainable release of a widely used herbicide (2-methyl-4-chlorophenoxyacetic acid, MCPA) via incorporation in a range of zirconium-based MOFs and their biodegradable polymer composites. Three Zr-based MOFs, viz., UiO-66, UiO-66-NH2, and UiO-67 were loaded with MCPA either postsynthetically or in situ during synthesis of the MOFs. The MCPA-loaded MOFs were then incorporated into a biodegradable polycaprolactone (PCL) composite membrane. All three MOFs and their PCL composites were thoroughly characterized using FT-IR, TGA, SEM, PXRD, BET, and mass spectrometry. Release of MCPA from each of these MOFs and their PCL composites was then studied in both distilled water and in ethanol for up to 72 h using HPLC. The best performance for MCPA release was observed for the postsynthetically loaded MOFs, with PS-MCPA@UiO-66-NH2 showing the highest MCPA concentrations in ethanol and water of 0.056 and 0.037 mg/mL, respectively. Enhanced release of MCPA was observed in distilled water when the MOFs were incorporated in PCL. The concentrations of herbicides in the release studies provide us with a range of inhibitory concentrations that can be utilized depending on the crop, making this class of composite materials a promising new route for future agricultural applications. / L.A.M.M. and S.N. acknowledge funding for a studentship by the Erasmus+ KA107 Student Mobility programme. V.P.T and L.R.T. acknowledge funding from the EPSRC (EP/R01650X/1)
229

Étude de la solubilité de l'oxyde de zirconium et de sa réactivité de surface en milieux aqueux / Study of zirconium oxide solubility and its surface reactivity in aqueous media

Zouari, Wiem 21 December 2018 (has links)
L’oxyde de zirconium est un matériau prometteur pour le stockage des actinides en formation géologique profonde. Pour la sureté de stockage, la stabilité de ces matrices dans les milieux géologiques doit être examinée. Une connaissance approfondie de la solubilité des phases solides de confinement des déchets radioactifs s’avère donc nécessaire. La solubilité de ZrO2 est très faible aux pH neutres (<10-8M), et augmente aux pH acides et alcalins. Cependant, les valeurs de solubilités publiées varient de plus de 6 ordres de grandeurs. L’objectif de ces travaux de thèse est de comprendre les processus ayant lieu, à l’équilibre, à l’interface ZrO2/solution et d’étudier la réactivité de surface de ce matériau en contact avec des solutions aqueuses. La solubilité de ZrO2 monoclinique et cubique a été explorée en approchant l’équilibre depuis les conditions de sous-saturation. Un protocole expérimental robuste a été développé permettant de mesurer, au plus précis possible, les très faibles concentrations de zirconium en solution (limite de quantification [Zr] ~10-11M). Les phases solides ont été caractérisées par BET, XRD, SAXS,HR-TEM and STEM-HAADF avant et après l’atteinte de l’équilibre afin d’étudier la réactivité de surface des matériaux mis en contact avec les solutions aqueuses. En vue de comprendre les mécanismes se déroulant à l’interface aussi bien que la faible solubilité dans les milieux aqueux, l’hydrolyse des liaisons Zr-O-Zr par les molécules d’eau a été étudiée par la méthode DFT en utilisant le code VASP. Cette étude nous a permis de proposer un mécanisme de dissolution dont l’étape limitante, aux pH neutres, est la difficulté de former un complexe activé à l’interface ZrO2/solution. / Zirconium dioxide is a promising ceramic for the specific immobilization of actinides in a geological disposal vault. An appropriate knowledge of the solubility controlling solid phases confining radioactive waste is necessary if one wants to assess the stability of ZrO2 in a disposal environmental conditions. The solubility of zirconium oxide is very low at neutral pH (<10-8M), but increases at highly acidic and alkaline pH. Solubility values may differ by more than 6 orders of magnitude at a given pH, indicating high uncertainties. The objective of this work is to understand processes governing the equilibrium between zirconium oxide and water, and to study the surface reactivity of the material in contact with aqueous solutions. The solubility of monoclinic and of cubic ZrO2 in aqueous solutions were investigated, approaching equilibrium from under-saturated conditions.The low solubility of zirconia makes its measurement a challenging task. A reliable experimental procedure was developed to measure low concentrations of zirconium (limit of quantitation[Zr] ~10-11M). In order to examine the surface reactivity, solid phases were further characterized by BET, XRD, SAXS, HR-TEM and STEM-HAADFbefore and after reaching equilibrium. In order to understand the reaction mechanism taking place at the zirconia/water interface as well as the low solubility in aqueous phase, hydrolysis of Zr-O-Zr bonds by a single and multiple water molecule were studied using the periodic DFT code, with Vienna ab initio simulation package (VASP). This study led to the proposal of a dissolution mechanism whose limiting step, in the neutral pH range, is the difficulty of formation of an activated complex.
230

Subcritical crack growth in zirconium alloys

Paes de Andrade, Arnaldo Homobono January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Vita. / Includes bibliographical references. / by Arnaldo Homobono Paes de Andrade. / Ph.D.

Page generated in 0.0509 seconds