Spelling suggestions: "subject:"zolotarev"" "subject:"zolotareva""
1 |
An analogue of the Korkin-Zolotarev lattice reduction for vector spaces over number fieldsRothlisberger, Mark Peter 14 December 2010 (has links)
We show the existence of a basis for a vector space over a number field with two key properties. First, the n-th basis vector has a small twisted height which is bounded above by a quantity involving the n-th successive minima associated with the twisted height. Second, at each place v of the number field, the images of the basis vectors under the automorphism associated with the twisted height satisfy near-orthogonality conditions analagous to those introduced by Korkin and Zolotarev in the classical Geometry of Numbers.
Using this basis, we bound the Mahler product associated with the twisted height. This is the product of a successive minimum of a twisted height with the corresponding successive minimum of its dual twisted height. Previous work by Roy and Thunder in [12] showed that the Mahler product was bounded above by a quantity which grows exponentially as the dimension of the vector space increases. In this work, we demonstrate an upper bound that exhibits polynomial growth as the dimension of the vector space increases. / text
|
2 |
Minimisation d'énergie sous contraintes : applications en algèbre linéaire et en contrôle linéaire / Energy minimisation under constraints : application to linear algebra and linear controlGryson, Alexis 01 July 2009 (has links)
Le problème de Zolotarev pour des ensembles discrets apparaît pour décrire le taux de convergence de la méthode ADI, dans l’approximation de certaines fonctions matricielles ou encore pour quantifier le taux de décroissance des valeurs singulières de certaines matrices structurées. De plus, la réduction de modèle constitue un enjeu important en théorie du contrôle linéaire, et on peut prédire la qualité de l’approximation d’un système dynamique linéaire continu stationnaire de grande dimension donné grâce à la résolution approchée d’une équation de Sylvester. Après avoir prouvé l’existence d’un minimiseur pour le troisième problème de Zolotarev pour des ensembles discrets, on détermine dans cette thèse le comportement asymptotique faible de ce problème sous certaines hypothèses de régularité. Pour mener cette étude, on considère un problème de minimisation d’énergie sous contraintes pour des mesures signées en théorie du potentiel logarithmique.On discute également la précision de nos résultats asymptotiques pour des ensembles discrets généraux du plan complexe, et une formule intégrale explicite est établie dans le cas particulier de deux sous-ensembles discrets de l’axe réel symétriques par rapport à l’origine. L’impact de nos résultats théoriques pour l’analyse du taux de convergence de la méthode ADI appliquée pour la résolution approchée d’une équation de Lyapounov est estimé à l’aide de plusieurs exemples numériques après avoir exposé l’algorithme nous permettant d’obtenir les paramètres utilisés. Mots clés : Théorie du potentiel / The Zolotarev problem with respect to discrete sets arises naturally to describe both the convergence rate of the ADI method, to compute approximation of various functions of matrices and to quantify the decreasing rate of singular values of structured matrices. Moreover, the theory of model reduction is a key problem in linear control theory, and the quality of the approximation of continuous stationnary linear dynamical system might be predicted with the computation of the solution of a Sylvester equation. Once proved the existence of a minimizer for the third Zolotarev problem with respect to discrete sets, we give the weak asymptotic behaviour of the Zolotarev quantity under some regularity hypothesis. In this purpose, we introduce a problem of energy minimization with constraints in logarithmic potential theory with respect to signed measures. We discuss the accuracy of our results for general discrete sets in the complex plane, and we prove an explicit integral formula in the particular case of two discret subsets of the real axis symmetric with respect to the imaginary axis. Then, the impact of our theoretical results concerning the analysis of the convergence rate of the ADI method applied to solve a Sylvester equation is estimated with various numerical examples after the description of the algorithm which we used to compute the parameters.
|
3 |
Minimisation d'énergie sous contraintes, applications en algèbre linéaire et en contrôle linéaireGryson, Alexis 01 July 2009 (has links) (PDF)
Le problème de Zolotarev pour des ensembles discrets apparaît pour décrire le taux de convergence de la méthode ADI, dans l'approximation de certaines fonctions matricielles ou encore pour quantifier le taux de décroissance des valeurs singulières de certaines matrices structurées. De plus, la réduction de modèle constitue un enjeu important en théorie du contrôle linéaire, et on peut prédire la qualité de l'approximation d'un système dynamique linéaire continu stationnaire de grande dimension donné grâce à la résolution approchée d'une équation de Sylvester. Après avoir prouvé l'existence d'un minimiseur pour le troisième problème de Zolotarev pour des ensembles discrets, on détermine dans cette thèse le comportement asymptotique faible de ce problème sous certaines hypothèses de régularité. Pour mener cette étude, on considère un problème de minimisation d'énergie sous contraintes pour des mesures signées en théorie du potentiel logarithmique. On discute également la précision de nos résultats asymptotiques pour des ensembles discrets généraux du plan complexe, et une formule intégrale explicite est établie dans le cas particulier de deux sous-ensembles discrets de l'axe réel symétriques par rapport à l'origine. L'impact de nos résultats théoriques pour l'analyse du taux de convergence de la méthode ADI appliquée pour la résolution approchée d'une équation de Lyapounov est estimé à l'aide de plusieurs exemples numériques après avoir exposé l'algorithme nous permettant d'obtenir les paramètres utilisés.
|
4 |
Mathematical Modeling and Dynamic Recovery of Power SystemsGarcia Hilares, Nilton Alan 19 May 2023 (has links)
Power networks are sophisticated dynamical systems whose stable operation is essential to modern society. We study the swing equation for networks and its linearization (LSEN) as a tool for modeling power systems. Nowadays, phasor measurement units (PMUs) are used across power networks to measure the magnitude and phase angle of electric signals. Given the abundant data that PMUs can produce, we study applications of the dynamic mode decomposition (DMD) and Loewner framework to power systems. The matrices that define the LSEN model have a particular structure that is not recovered by DMD. We thus propose a novel variant of DMD, called structure-preserving DMD (SPDMD), that imposes the LSEN structure upon the recovered system. Since the solution of the LSEN can potentially exhibit interesting transient dynamics, we study the transient growth for the exponential matrix related to the LSEN. We follow Godunov's approach to get upper bounds for the transient growth and also analyze the relationship of such bounds with classical bounds based on the spectrum, numerical range, and pseudospectra. We show how Godunov's bounds can be optimized to bound the solution operator at a given time. The Loewner framework provides a tool for identifying a dynamical system from tangential measurements. The singular values of Loewner matrices guide the discovery of the true order of the underlying system. However, these singular values can exhibit rapid decay when the interpolation points are far from the poles of the system. We establish a range of bounds for this decay of singular values and apply this analysis to power systems. / Doctor of Philosophy / Power networks are sophisticated dynamical systems whose stable operation is essential to modern society. We study a mathematical model called the LSEN to understand and recover the dynamics of power networks. The LSEN model defines some matrices that have special structures dictated by the application. We propose a novel method to recover matrices with this desired structure from data. We also study some properties of the solution of the LSEN model related to the exponential of a matrix, connecting classical results with the particular approach that we follow. In the system identification context, we also study bounds on the singular values of Loewner matrices to understand the interplay between the data (measurements of the system) and mathematical artifacts (poles of the system).
|
5 |
Techniques d'approximation rationnelle en synthèse fréquentielle : problème de Zolotarev et algorithme de SchurLunot, Vincent 05 May 2008 (has links) (PDF)
Cette thèse présente des techniques d'optimisation et d'approximation rationnelle ayant des applications en synthèse et identification de systèmes passifs. La première partie décrit un problème de Zolotarev : on cherche à maximiser sur une famille d'intervalles l'infimum du module d'une fonction rationnelle de degré donné, tout en contraignant son module à ne pas dépasser 1 sur une autre famille d'intervalles. On s'intéresse dans un premier temps à l'existence et à la caractérisation des solutions d'un tel problème. Deux algorithmes, de type Remes et correction différentielle, sont ensuite présentés et étudiés. Le lien avec la synthèse de filtres hyperfréquences est détaillé. La théorie présentée permet en fait le calcul de fonctions de filtrage, multibandes ou monobandes, respectant un gabarit fixé. Celle-ci a été appliquée à la conception de plusieurs filtres hyperfréquences multibandes dont les réponses théoriques et les mesures sont données. La deuxième partie concerne l'approximation rationnelle Schur d'une fonction Schur. Une fonction Schur est une fonction analytique dans le disque unité bornée par 1 en module. On étudie tout d'abord l'algorithme de Schur multipoints, qui fournit un paramétrage des fonctions strictement Schur. Le lien avec les fonctions rationnelles orthogonales, obtenu grâce à un théorème de type Geronimus, est ensuite présenté. Celui-ci permet alors d'établir certaines propriétés d'approximation dans le cas peu étudié où les points d'interpolation tendent vers le bord du disque. En particulier, une convergence en métrique de Poincaré est obtenue grâce à une extension d'un théorème de type Szego. Une étude numérique sur l'approximation rationnelle Schur à degré fixé est aussi réalisée.
|
Page generated in 0.0308 seconds