Spelling suggestions: "subject:"asynuclein"" "subject:"synuclein""
121 |
Intranasal carnosine protects against alpha-synuclein accumulation in the substantia nigra and motor dysfunction in the Thy1-aSyn mouse model of Parkinson’s disease.Brown, Josephine M., B.S. January 2019 (has links)
No description available.
|
122 |
Impact of pleiotrophin gene therapy in 6-hydroxydopamine and AAV alpha-synuclein rodent models of Parkinson's diseaseGombash Lampe, Sara E. 23 September 2013 (has links)
No description available.
|
123 |
Mechanisms of Neurodegeneration and Neuroprotection in Parkinson’s and Alzheimer's DiseaseIsmael, Sazan Khalid 23 September 2019 (has links)
No description available.
|
124 |
Characterizing the Effects of 14-3-3 Isoforms on Alpha-Synuclein Toxicity in a Yeast ModelBraunschweiger, Angela Marie 01 September 2021 (has links)
No description available.
|
125 |
The role of Parkin R274W in genetic forms of Parkinson’s diseaseSevegnani, Martina 14 December 2022 (has links)
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of nigral dopaminergic (DA) neurons and the formation of Lewy bodies. Despite most cases being idiopathic, mutations in several genes have been implicated in familial forms of PD. In particular, recessive mutations in Parkin gene (PARK2) are the most common cause of young-onset inherited parkinsonism. Parkin is an E3 ubiquitin ligase involved both in the control of mitochondrial turnover and in the proteasome-dependent degradation of proteins, two pathways that have been causally linked to PD development. Although initially described as a recessive disorder, experimental evidence suggests that heterozygous Parkin mutations can exert dominant toxic effects causing neurodegeneration. In 2012, Ruffmann and colleagues identified the first pure heterozygous R275W Parkin patient with clinical features of typical late-onset PD and a diffuse Lewy body pathology. To assess the impact of R275W Parkin, we generated the first mouse line carrying Parkin R274W mutation, which corresponds to the human R275W substitution. Unlike Parkin deficient mouse models, both homo- and heterozygous R274W mice show an age-related motor impairment, degeneration of dopaminergic neurons and neuroinflammation. We detected structural and functional mitochondrial abnormalities related to PARIS-PGC-1α axis impairment in R274W+/+ mice brain and skeletal muscle. Strikingly, we noticed signs of protein aggregation in both R274W+/- and +/+ mice, while we identified bona fide Lewy bodies only in the midbrain of heterozygous
mice. Additionally, in the brains of R274W mice we discovered overt abnormalities of the glymphatic system, the main route for brain waste clearance. Our preliminary observations suggest that Parkin influences aquaporin-4 (AQP4) localization. Altogether, our data suggest that R274W Parkin substitution behaves both as a loss ofand a gain of toxic function, highlighting a link between Parkin dominant toxicity and age-dependent motor impairment, neuroinflammation, DA neurons loss, glymphatic system dysfunctions and α-synuclein aggregation in vivo. Hence, our study provides a new robust mouse model to explore PD pathogenesis and glymphatic dysfunctions, offering the possibility to test novel therapeutic strategies with great predictivity.
|
126 |
Characterization of the roles of mitochondria in the toxicity of α-synuclein in a respiratory cell modelGillespie, Breonna Elizabeth 01 June 2023 (has links)
No description available.
|
127 |
The interaction between ATP13A2 and alpha-synuclein in miceDirr, Emily Ribak January 2014 (has links)
No description available.
|
128 |
Tau and alpha-synuclein fibrillization in vitro: lessons from surfactant inducers and small molecule inhibitorsNecula, Mihaela 29 September 2004 (has links)
No description available.
|
129 |
Rapid induction of dopaminergic neuron loss accompanied by Lewy body-like inclusions in A53T BAC-SNCA transgenic mice / A53T変異型αシヌクレインBACトランスジェニックマウスで、レビー小体様封入体を伴う急速なドパミン神経細胞脱落が誘発されたOkuda, Shinya 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24086号 / 医博第4862号 / 新制||医||1059(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 井上 治久, 教授 渡邉 大, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
130 |
Structural Basis of Amyloid Oligomer Toxicity and Inhibition by Small Molecules and Molecular ChaperonesAhmed, Rashik January 2020 (has links)
Protein misfolding and the accumulation of insoluble aggregates is a hallmark of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s disease (PD). In AD and PD patients, extracellular protein deposits consisting of amyloid beta (Aβ) and intraneuronal inclusions composed of alpha synuclein (αS) are observed, respectively. Notably, the spatiotemporal patterning of soluble protein oligomers of αS and Aβ closely follow disease progression, giving support to an emerging role of soluble oligomers in PD and AD pathogenesis. However, the structural features underlying the toxicity of Aβ and αS oligomers remain elusive. This doctoral dissertation aims at elucidating the structural determinants of oligomer toxicity by focusing on the development and application of multidisciplinary approaches based primarily on solution NMR in combination with electron microscopy, multi-angle light scattering, fluorescence microscopy, wide-angle x-ray diffraction and cellular biophysics. Using this interdisciplinary approach, in chapters 2 and 3, we identify at atomic resolution the key structural elements that facilitate the colocalization, interaction and subsequent insertion of soluble Aβ oligomers into membranes, which ultimately result in the loss of membrane integrity. Notably, we show that small molecules, such as green tea catechins, remodel these structural features and effectively perturb the interactions with membranes. In chapter 4, we extend these analyses to αS and identify how the chaperone, Human Serum Albumin (HSA), remodels toxic αS oligomers into non-toxic species and breaks the catalytic cycle that generates new toxic oligomers. Lastly, in chapter 5, we describe a novel solution NMR approach to map at atomic resolution the sites of early self-association, with minimal bias from monomer dynamics, an effect that frequently dominates residue-dependent variations in solution NMR measurements. Overall, given that Aβ and αS are archetypical amyloidogenic proteins, we anticipate that the structure – toxicity relationships established herein, and the related experimental approaches may be transferrable to other amyloidogenic systems. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0228 seconds