• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 42
  • 29
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 25
  • 17
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Natural and Anthropogenic Sources Controlling Regional Groundwater Geochemistry on the Niagara Peninsula

Smal, Caitlin January 2017 (has links)
Groundwater chemistry on the Niagara Peninsula has been identified as highly mineralized in comparison to groundwaters collected from the same bedrock formations elsewhere in southern Ontario. Three geochemical zones were discerned using hierarchical cluster analysis and other geochemical and isotopic methods. The Escarpment Zone, located along the Niagara and Onondaga Escarpments, is characterized by unconfined aquifer conditions, parameters reflective of surficial contaminants, including road salt, and elevated HCO3, DOC, NO3-, coliform bacteria and tritium. In contrast, in the Salina Zone thick, low-permeability sediments and gypsiferous bedrock results in highly mineralized groundwaters with Ca-SO4 geochemical facies and elevated S2-, Ca2+, Mg2+, K+, Na+, SO42-, Cl-, Br-, Sr2+, NH4+ and CH4. The Guelph Zone contains the lowest electrical conductivity of the three zones and elevated F-. Outliers exist with groundwater geochemistry that differs from the local geochemical zone and the host aquifer. These sites have elevated SO42- (>1000 to 5200 mg/L) with depleted δ34SSO4 (-2.2 to 14.3‰ VCDT) signatures that differs starkly from Devonian and Silurian evaporites (~20 to 32 ‰) in the host formations. This exogenic SO4 was identified in a cross-formational northeast – southwest linear trend crossing three major groundwater flow systems. The lack of down-stream impact in these systems and tritium groundwater ages that are typically only decades old indicate a young, non-geological origin and implicate anthropogenic activities. Additionally, nine samples were identified with elevated methane concentrations and δ13CCH4 signatures within the thermogenic range. As thermogenic methane is not produced within shallow aquifers and would be short-lived in the presence of the ubiquitous sulfate, these samples imply recent upward migration of methane from depth through vertical conduits. Taken together, the evidence supports large-scale upward movement of fluids in the centre of the Niagara geochemical anomaly and more sporadic upward transport of gases over a wider area of the peninsula. The most likely vector is through corroded and leaking casings or boreholes of abandoned (century) gas wells that are common across the peninsula. / Thesis / Master of Science (MSc)
122

Fault Location Algorithms in Transmission Grids

Harrysson, Mattias January 2014 (has links)
The rapid growth of the electric power system has in recent decades resulted in an increase of the number of transmission lines and total power outage in Norway. The challenge of a fast growing electrical grid has also resulted in huge increases of overhead lines and their total length. These lines are experiencing faults due to various reasons that cause major disruptions and operating costs of the transmission system operator (TSO). Thus, it’s important that the location of faults is either known or can be estimated with reasonably high accuracy. This allows the grid owner to save money and time for inspection and repair, as well as to provide a better service due to the possibility of faster restoration of power supply and avoiding blackouts.  Fault detection and classification on transmission lines are important tasks in order to protect the electrical power system. In recent years, the power system has become more complicated under competitive and deregulated environments and a fast fault location technique is needed to maintain security and supply in the grid. This thesis compares and evaluates different methods for classification of fault type and calculation of conventional one-side and two-side based fault location algorithms for distance to fault estimation.  Different algorithm has been implemented, tested and verified to create a greater understanding of determinants facts that affect distance to faults algorithm’s accuracy.  Implemented algorithm has been tested on the data generated from a number of simulations in Simulink for a verification process in implemented algorithms accuracy. Two types of fault cases have also been simulated and compared for known distance to fault estimation.

Page generated in 0.0401 seconds