• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 3
  • Tagged with
  • 30
  • 30
  • 17
  • 17
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental And Theoretical Study Of The Optical Properties Of Semiconductor Quantum Dots

Nootz, Gero 01 January 2010 (has links)
The aim of this dissertation is to gain a better understanding of the unique electronic structure of lead salt quantum dots (QDs) and its influences on the nonlinear optical (NLO) properties as well as the time dynamics of the photogenerated charge carriers. A variety of optical techniques such as Z-scan, two-photon excited fluorescence and time-resolved pump probe spectroscopy are used to measure these properties. The one-photon as well as the degenerate and nondegenerate two-photon absorption (2PA) spectra are measured and the electronic wave functions from a four-band envelope function formalism are used to model the results. We observe local maxima in the 2PA spectra for QD samples of many different sizes at energies where only 1PA is predicted by the model. This is similar to the previously measured transitions in the 1PA spectra which are not predicted by the model but accrue at the energies of the two-photon allowed transitions. Most importantly we observe 2PA peaks for all samples at the energy of the first one-photon allowed transition. This result can only be understood in terms of symmetry breaking and therefore is strong evidence that other transitions, not predicted by the model if the selection rules are left intact, also have the origin in the lifted spatial symmetry of the wave functions. On the other hand, the uniquely symmetric eigenenergies of these quantum-confined energy states in the conduction and valance bands explain the observed trend toward larger two-photon cross-sections as the quantum confinement is increased in smaller QDs. Moreover, this unique feature is shown to reduce the possible relaxation channels for photoexcited carriers, which is confirmed experimentally by the reduced carrier relaxation rate as compared to CdSe QDs which lack this symmetry. Carrier multiplication (CM), a process in which several electrons are excited by the iv absorption of a single photon is studied in PbS QDs. We show that for PbS QDs with radius smaller than 2.5 nm the parameters of CM get very close to the theoretical optimum. Nextgeneration solar cells operating under these ideal conditions could potentially have conversion efficiency of up to 42%. This compares favorably to the 30% efficiency limit of a single junction silicon solar cell.
12

Two-photon absorption in cruciform and dipolar chromophores: excitonic interactions and response to metal ions

Siegel, Nisan Naftali 04 June 2010 (has links)
Structure-property relationships for two-photon absorption (2PA) in branched organic chromophores is a topic of current interest, as is the design of chromophores with advantageous properties for two-photon laser scanning microscopy (2PLSM). The main goals of this dissertation were to study and explain the one-photon absorption (1PA) and 2PA properties of cruciform chromophores based on 1,4-distyryl-2,5-bis(phenylethynyl)benzene with varying electron donor (D) and acceptor (A) groups, and to characterize the 2PLSM-relevant response of some of these chromophores and a set of dipolar chromophores to binding with zinc ions. The compounds were studied by 1PA, fluorescence and 2PA spectroscopy. A ππ* exciton model was developed to explain the spectral properties of the 1,4-distyryl-2,5-bis(phenylethynyl)benzene cruciform with no D or A groups or with four identical D groups at the termini of the linear arms of the chromophore. This model indicated that there is some coupling and mixing of the lowest excited states e of the linear arms, leading to splitting of the 1PA spectrum of the cruciform. There was little coupling or mixing of the higher excited states e′ accessed in 2PA, leading to a two-band 2PA spectrum for the chromophore, in contrast to cruciform compounds in the literature with identical conjugated arms, which have one visible 2PA band. For cruciforms with D groups on the styryl arm and A character on the terminal phenyls of the phenylethynyl arms (D/A cruciforms), the ππ* exciton model was complemented with a charge-transfer (CT) exciton model describing interactions of charge-transfer pathways between the D and A groups. This model explained the broadness of the 1PA band of D/A cruciforms as well as the two 2PA bands observed for these chromophores. The fluorescence and 2PA spectral responses to binding of Zn²⁺ ions to the D or A groups of some cruciform compounds were also assessed, to provide insight into the design of new analyte-sensing cruciforms for 2PLSM that take advantage of enhancement or reduction of D/A character upon analyte binding. It was found that canceling charge donation from the D groups in differing D/A cruciforms resulted in fluorescence and 2PA spectra nearly indistinguishable from each other, suggesting that turn-off of D groups is not an optimal modality of 2PLSM analyte sensing in cruciforms. Binding Zn²⁺ to A groups was shown to result in an increase in the D/A character of the cruciform, with fluorescence peak energies that changed depending on the location of the A group. It is suggested that the use of non-binding donors and analyte-binding A groups in differing patterns on the arms could be a valuable design motif to achieve 2PLSM sensor compounds based on this cruciform structure. The 2PA spectra of a set of dipolar Zn²⁺ sensing dyes designed for ratiometric imaging in 2PLSM were also studied. These dyes had moderate 2PA strength, with redshifts of fluorescence 2PA spectra on Zn²⁺ binding. The isosbestic point of 2PA of most chromophores was within the range of 2PLSM excitation sources commonly used, rendering these dyes good candidates for use in ratiometric sensing in 2PLSM.
13

EXPERIMENTAL STUDIES ON THE DETERMINATION OF ACOUSTIC BULK MATERIAL PROPERTIES AND TRANSFER IMPEDANCE

Li, Wanlu 01 January 2014 (has links)
Soft trim absorbing parts (i.e., headliners, backwalls, side panels, etc.) are normally comprised of different layers including films, adhesives, foams and fibers. Several approaches to determine the complex wavenumber and characteristic impedance for porous sound absorbing materials are surveyed and the advantages and disadvantages of each approach are discussed. It is concluded that the recently documented three-point method produces the smoothest results. It is also shown that measurement of the flow resistance and the use of empirical equations is sufficient for many common materials. Following this, the transfer impedance of covers, adhesives, and densified layers are measured using an impedance difference approach. The transfer matrix method was then used to predict the sound absorption of a multi-layered materal which included a perforated cover, fiber layers, and an adhesive. The predicted results agree well with measurement.
14

Theoretical evaluation of the nonlinear optical properties of extended and π-conjugated chromophores

Ohira, Shino 18 June 2009 (has links)
The nonlinear optical (NLO) properties were investigated in various extended π-conjugated chromophores: cyanine and alkyne carbocations; porphyrin dimers; and squaraine compounds that possess electronic, double resonance, and vibronic based NLO properties. In summary: (i) It was demonstrated that the alkyne carbocations have very similar optical properties to traditional cyanine dyes. Our theoretical results establish that the alkyne carbocations, in spite of their significant degree of bond-length alternation, behave in the same way as cyanine dyes. (ii) The nature of the -bridge in porphyrin dimers tunes the electronic coupling strength, which in turn determines the splitting of the energy levels and the (non)linear optical properties. (iii) We have shown that the origin of the lowest TPA-active states in squaraines is dependent on the nature of substituent donor moiety, changing from predominantly electronic to vibronic in character. For all squaraines containing indolinylidenemethyl donors, a vibronic origin for the TPA peak, and the energy and lineshape of the experimentally observed lowest TPA peak in these compounds were confirmed.
15

Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-gap Semiconductors

Cirloganu, Claudiu 01 January 2010 (has links)
The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier nonlinearities and decay mechanisms. The non-degenerate two-photon absorption was investigated in several direct-gap semiconductors with picosecond and femtosecond pulses. Large enhancements in 2PA were demonstrated when employing highly non-degenerate photon pairs and the results were shown to be consistent to a simple 2-parabolic band theory based on a "dressed" state approach. The nonlinear refractive index induced in such configurations was also calculated and possible implications of such extreme behavior are discussed. A large number of measurements of 3PA were taken at multiple wavelengths and in several semiconductors. The subsequent analysis has shown that simple 2-band model calculations (based on either perturbative or tunneling approaches) do not adequately describe the experimental trends. A more comprehensive model, based on Kane’s 4-band theory was developed and we calculate three-photon spectra for zincblende structures within the perturbative iv framework. We have confirmed the results of our calculations performing a series of Z-scans in semiconductors ZnSe and ZnS, yielding complete experimental three-photon spectra. A systematic approach based on using a large variety of pulse durations was needed to quantify the wealth of nonlinear optical processes in InSb, accessible in the mid-infrared range. Femtosecond pulses provided a lower limit to measurements of the instantaneous effects (absorptive and refractive), while picosecond pulses allowed further characterization of the freecarrier effects, including population dynamics in the high density regime (Auger effects). The model developed permitted us to verify the temperature dependence of free-carrier absorption recently predicted, and to successfully model optical limiting data with longer, nanosecond pulses.
16

Design, Synthesis And Characterization Of New Two-photon Absorbing (2pa) Fluorescent Dyes And Bioconjugates, And Their Applications In Bioimaging

Andrade, Carolina D. 01 January 2010 (has links)
The development of new multiphoton absorbing materials has attracted the attention of researchers for the last two decades. The advantages that multiphoton absorbing materials offer, versus their one-photon absorbing counterparts, rely on the nature of the nonlinearity of the absorption process, where two photons are absorbed simultaneously offering increased 3D resolution, deeper penetration, and less photobleaching and photodamage as a result of a more confined excitation. The applications of efficient two-photon absorbing materials have been extensively expanding into the fields of photodynamic therapy, microscopy, and optical data storage. One of the fields where an increased interest in multiphoton absorbing materials has been most evident is in bioimaging, in particular, when different cellular processes and organelles need to be studied by fluorescence microscopy. The goal of this research was to develop efficient two-photon absorption (2PA) compounds to be used in fluorescence bioimaging, meaning that such compounds need to posses good optical properties, such as high fluorescence quantum yield, 2PA cross section, and photostability. In the first chapter of this dissertation, we describe the synthesis and structural characterization of a new series of fluorescent donor–acceptor and acceptor-acceptor molecules based on the fluorenyl ring system that incorporated functionalities such as alkynes and thiophene rings, through efficient Pd-catalyzed Sonogashira and Stille coupling reactions, in order to increase the length of the conjugation in our systems. These new molecules proved to have high two-photon absorption (2PA), and the effect of these functionalities on their 2PA cross section values was evaluated. Finally, their use in two-photon fluorescence microscopy (2PFM) imaging was demonstrated. iii One of the limitations of the compounds described in Chapter 1 was their poor water solubility; this issue was addressed in Chapter 2. The use of micelles in drug delivery has been shown to be an area of increasing interest over the last decade. In the bioimaging field, it is key to have dye molecules with a high degree of water solubility to enable cells to uptake the dye. By enclosing a hydrophobic dye in Pluronic® F-127 micelles, we developed a system that facilitates the use of 2PA molecules (typically hydrophobic) in biological systems for nonlinear biophotonic applications, specifically to image the lysosomes. Furthermore, we report in this chapter the efficient microwave-assisted synthesis of the dye used in this study. In addition, linear photophysical and photochemical parameters, two-photon absorption (2PA), and superfluorescence properties of the dye studied in Chapter 2, were investigated in Chapter 3. The steady-state absorption, fluorescence, and excitation anisotropy spectra of this dye were measured in several organic solvents and aqueous media. In Chapter 4, we describe the preparation and the use of an efficient and novel twophoton absorbing fluorescent probe conjugated to an antibody that confers selectivity towards the vascular endothelial growth factor receptor 2 (VEGFR-2) in porcine aortic endothelial cells that express this receptor (PAE-KDR). It is known that this receptor is overexpressed in certain cancer processes. Thus, targeting of this receptor will be useful to image the tumor vasculature. It was observed that when the dye was incubated with cells that do not express the receptor, no effective binding between the bioconjugate and the cells took place, resulting in very poor, nonspecific fluorescence images by both one and two-photon excitation. On the other hand, when the dye was incubated with cells that expressed VEGFR-2, efficient imaging of the cells was obtained, even at very low concentrations (0.4 μM). Moreover, incubation of the bioconjugate iv with tissue facilitated successful imaging of vasculature in mouse embryonic tissue
17

Nonlinear Absorption And Free Carrier Recombination In Direct Gap Semiconductors

Olszak, Peter D. 01 January 2010 (has links)
Nonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using femtosecond, picosecond, and nanosecond IR sources. The 2PA spectrum is measured at room temperature with femtosecond pulses, and the temperature dependence of 2PA and FCA is measured at 10.6µm using a nanosecond CO2 laser giving results consistent with the temperature dependent measurements at several wavelengths made with a tunable picosecond system. Measurements over this substantial range of pulse widths give results for FCA and 2PA consistent with a recent theoretical model for FCA. While the FCA cross section has been generally accepted in the past to be a constant for the temperatures and wavelengths used in this study, this model predicts that it varies significantly with temperature as well as wavelength. Additionally, the results for 2PA are consistent with the band gap scaling (Eg-3 ) predicted by a simple two parabolic band model. Using nanosecond pulses from a CO2 laser enables the recombination rates to be determined through nonlinear transmittance measurements. Three-photon absorption is also observed in InSb for photon energies below the 2PA band edge. Prior to this work, data on three-photon absorption (3PA) in semiconductors was scarce and most experiments were performed over narrow spectral ranges, v making comparison to the available theoretical models difficult. There was also disagreement between the theoretical results generated by different models, primarily in the spectral behavior. Therefore, we studied the band gap scaling and spectra of 3PA in several semiconductors by the Z-scan technique. The 3PA coefficient is found to vary as (Eg-7 ), as predicted by the scaling rules of simple two parabolic band models. The spectral behavior, which is considerably more complex than for 2PA, is found to agree well with a recently published theory based on a fourband model.
18

Élaboration de matériaux hautement stable thermiquement par modification et fonctionnalisation de la résine bisphthalonitrile / Preparation of highly thermostable materials by modification and functionalization of bisphthalonitrile resin

Lei, Ya-Jie 24 July 2013 (has links)
Les polymères de phtalonitrile sont obtenus par des réactions d'addition des groupements cyano à haute température et pour un temps long à partir de dérivés de phtalonitrile. Ils trouvent de nombreuses applications dans les domaines de pointe comme l'aérospatiale et la marine. Cependant, leurs performances sont limitées par les inconvénients suivants : (1) fragilité liée intrinsèquement à leur réseau structural, (2) température de fusion élevée, fenêtre de conditions de mise en forme étroite, température de cuisson élevée, cinétique de cuisson faible, (3) Selon la litérature, le traitement du bisphthalonitrile pour obtenir la résine correspondante s'effectue souvent à des températures inférieures à 500°C. Il y a peu d'études sur les matériaux formés à des températures supérieures à celle-ci, (4) Il n'y a pas beaucoup d'études sur la fonctionnalisation de la résine bisphthalonitrile et son domaine d'application doit être élargis. Cette thèse porte sur le dévelopement de méthodes permettant la modification et la fonctionnalisation de la résine bisphthalonitrile conduisant à une amelioration des propriétés mécaniques de celle-ci. De plus, des nanotubes de carbone ayant une morphologie différente et des matériaux capables d'absorber les hyperfréquences ont été obtenus par pyrolyse de la résine bisphthalonitrile en présence de différents catalyseurs de fer et sur une plage de température allant de 600 a 900°C / Bisphthalonitrile polymers are obtained by addition curing reaction of cyano groups upon heating phthalonitrile derivatives at elevated temperature and for an extended period of time. They have found many applications in advanced technologies such as aerospace and marine. However, their performances are limited by the following disadvantages: (1) high brittleness of the inherent network structure; (2) high melting temperature, narrow processing window, high curing temperature, low curing rate and long curing time; (3) according to the literature, the processing temperature of bisphthalonitrile resin-based composites is controlled at 500°C or less, whereas there are few studies on materials formed above 500°C; (4) studies on the functionalization of bisphthalonitrile resins are not abundant and its application range needs to be expanded. Based on the above statement, this thesis is focused on the modification and functionalization of bisphthalonitrile resins. The latter were modified by a variety of methods, resulting in improved mechanical properties. Moreover, carbon nanotubes with different morphologies and microwave absorbing materials were obtained by pyrolysing bisphthalonitrile resins with different metal iron catalysts in the range of 600 to 900°C
19

Estudo da viabiliza??o do uso da mistura h?brida ferrocarbonila / ferrita de NI0,5Zn0,5Fe2o4 como material absorvedor de radia??o eletromagn?tica

Rodrigues, Manuella Karla da Cruz 31 August 2010 (has links)
Made available in DSpace on 2014-12-17T15:41:56Z (GMT). No. of bitstreams: 1 ManuellaKCR_DISSERT.pdf: 3952261 bytes, checksum: 56cf586893164ffedc3ec29beb8e775a (MD5) Previous issue date: 2010-08-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Were synthesized ferrites of NiZn on systems Ni0,5Zn0,5Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350?C/3h. The evolution of the phases formed after calcinations at 350?C/3h, 600, 1000 and 1100?C/2h was accompanied by X-ray diffraction using the Rietveld refinement method for better identification os structures formed. Was observed for samples calcined at different temperatures increased crystallinity with increasing calcination temperature, being observed for the samples calcined at 900 and 1100 ? C/2h was the precipitation of a secondary phase, the phase hematite. The ferrocarbonila of industrial origin was analyzed by X-ray diffraction and Rietveld for the identification of its structure. The carbonyl iron was added NiZn ferrite calcined at 350?C/3h, 600, 900, 1000 and 1100?C/2h to the formation of hybrid mixtures. They were then analyzed by Xray diffraction and Rietveld. The NiZn ferrite and ferrocarbonila as well as the hybrid mixtures were subjected to analysis of scanning electron microscopy, magnetic measurements and reflectivity. The magnetic measurements indicated that the ferrite, the ferrocarbonila, as well as hybrid mixtures showed characteristics of soft magnetic material. The addition of ferrocarbonila in all compositions showed an increase in the results of magnetic measurements and reflectivity. Best result was observed in the increase of the magnetization for the hybrid mixture of Ferrocarbonila / ferrite of NiZn calcined at 600?C/2h. The mixture Ferrocarbonila / ferrite calcined 1000?C/2h presented better absorption of electromagnetic radiation in the microwave / Foram sintetizadas ferritas de NiZn no sistema Ni0,5Zn0,5Fe2O4, pelo m?todo dos citratos precursores. A decomposi??o dos precursores foi estudada por an?lise termogravim?trica e espectroscopia na regi?o do infravermelho na temperatura de 350?C/3h. A evolu??o das fases formadas ap?s calcina??es a 350?C/3h, 600, 1000 e 1100?C/2h foi acompanhada por difra??o de raios X utilizando o refinamento de Rietveld para melhor identifica??o das estruturas formadas. Foi observado para as amostras calcinadas em diferentes temperaturas o aumento da cristalinidade com o aumento da temperatura de calcina??o, sendo verificado que para as amostras calcinadas a 900 e 1100?C/2h ocorreu a precipita??o de uma fase secund?ria, a fase hematita. A ferrocarbonila de proced?ncia industrial foi analisada por Difra??o de raios X e por Rietveld para a identifica??o de sua estrutura. A ferrocarbonila foi adicionada ? ferrita de NiZn calcinada a 350?C/3h, 600, 1000 e 1100?C/2h para a forma??o das misturas h?bridas. Em seguida foram analisadas por difra??o de raios X e por Rietveld. A ferrita de NiZn, a ferrocarbonila, assim como as misturas h?bridas foram submetidas ? an?lises de Microscopia Eletr?nica de Varredura, medidas magn?ticas e refletividade. As medidas magn?ticas indicaram que a ferrita, a ferrocarbonila, como tamb?m as misturas h?bridas apresentaram caracter?sticas de material magn?tico macios. A adi??o de ferrocarbonila em todas as composi??es indicou um aumento nos resultados de medidas magn?ticas e de refletividade. Foi verificado melhor resultado no aumento da magnetiza??o para a mistura h?brida de Ferrocarbonila/ferrita de NiZn calcinada 600?C/2h. A mistura Ferrocarbonila/ferrita calcinada 1000?C/2h apresentou melhor resultado absor??o da radia??o eletromagn?tica na faixa de microondas em rela??o ?s outras misturas
20

UTILIZATION OF EMPIRICAL MODELS TO DETERMINE THE BULK PROPERTIES OF COMPRESSED SOUND ABSORPTIVE MATERIALS

Wu, Ruimeng 01 January 2017 (has links)
Empirical models based on flow resistivity are commonly used to determine the bulk properties of porous sound absorbing materials. The bulk properties include the complex wavenumber and complex characteristic impedance which can be used directly in simulation models. Moreover, the bulk properties can also be utilized to determine the normal incidence sound absorption and specific acoustic impedance for sound absorbing materials of any thickness and for design of layered materials. The sound absorption coefficient of sound absorbing materials is measured in an impedance tube using wave decomposition and the measured data is used to determine the flow resistivity of the materials by least squares curve fitting to empirical equations. Results for several commonly used foams and fibers are tabulated to form a rudimentary materials database. The same approach is then used to determine the flow resistivity of compressed sound absorbing materials. The flow resistivities of the compressed materials are determined as a function of the compression ratio. Results are then used in conjunction with transfer matrix theory to predict the sound absorptive performance of layered compressed absorbers with good agreement to measurement.

Page generated in 0.0764 seconds