451 |
Infiltration in Stormwater Detention/ Percolation Basin DesignBeaver, Robert David 01 January 1977 (has links) (PDF)
Investigations of soil parameters, infiltration testing, and storm observations are used to determine the infiltration characteristics for three Central Florida stormwater holding basins. Basic soil parameters are investigated and a value for available soil water storage is computed from these data. In-situ permeability and infiltration tests are used to obtain field permeability and infiltration rates. Infiltration test results may be applied to infiltration theory. Data from infiltration tests may be verified using available soil water storage computed from soil parameters. The effect of soil cover conditions is noted and investigated using the drum infiltrometer. Storm observations are used to confirm infiltration models. Infrequency of rainfall activity limited the number and reliability of observations. The effects of precipitation frequency and input intensity to the pond also noted in storm observations. A design procedure incorporating infiltration in stormwater retention basins is presented. This design procedure is based on infiltration theory and observed pond operation.
|
452 |
Colloidal Cerium Oxide Nanoparticle: Synthesis and Characterization TechniquesClinton, Jamie C. 25 February 2008 (has links)
Fluorescence spectra and UV-Vis absorption spectra are collected on cerium oxide nanocrystalline particles. While CeO2 is the stable form of bulk cerium oxide, ceria nanoparticles exhibit a nonstoichiometric composition, CeO2-γ, due to the presence of oxygen vacancies and the formation of Ce2O3 at the grain boundaries. The Ce(III) ions, which are more reactive and therefore more desirable for various applications, are created by oxygen vacancies, which act as defects in the CeO2-γ crystal lattice. These defects form trap states in the band gap of CeO2, which can be seen in the absorption spectra. Ce(III) is required for fluorescence of the ceria nanoparticles while Ce(IV) is involved in only nonradiative transitions. The optical spectroscopy results show that the ceria samples have different ratios of Ce(III) ions to Ce(IV) ions, which is verified by x-ray photoemission spectroscopy (XPS). / Master of Science
|
453 |
The Effect of Salt Splash on Nylon 6,6Steward, Scott D. 13 November 1999 (has links)
One of the most common environmental exposures that nylon undergoes, when used for automotive applications, is that of salt splash, which commonly occurs during winter driving. This study looks at the effect of various salts (NaCl, KCl, CaCl2) on the thermal and mechanical properties of nylon when exposed to one and four molar aqueous salt solutions. It was found that the diffusion of salt solutions into nylon 6,6 occurred in a pseudo-Fickian manner. Also, it was found that the presence of salt had an effect on the rate of decrease of yield stress with increasing exposure time. The presence of residual salt was found to accelerated deterioration of nylon 6,6, possibly via hydrolysis. In addition, it was found that residual salt was left after water was removed from the system and that this salt was removable. / Master of Science
|
454 |
In Situ Measurements of Acoustic Properties of SurfacesMallais, Scott January 2009 (has links)
The primary goal of this work is to measure the acoustic properties of a surface in situ. This generally involves sound pressure measurements and a calculation of the acoustic reflection factor of a surface, which may then be used to calculate the
acoustic impedance or the acoustic absorption coefficient. These quantities are of use in acoustic simulations, architectural design, room acoustics and problems in noise control. It is of great interest to determine the performance of a particular surface where it is used, as opposed to measurements conducted in a laboratory. In situ measurements are not trivial, caution must be taken to ensure that high signal-to-noise levels are achieved and that the reflections of sound from the measurement environment are taken into consideration. This study presents five measurement methods that may be applied in situ. The acoustic absorption coefficient is calculated for each method on various surfaces spanning the whole range of absorption. Emphasis is placed on frequency resolution, in order to determine absorption characteristics in the bass region (50 Hz to 200 Hz). Advantages and disadvantages of
each method are demonstrated and discussed. Finally, the in situ implementation of the surface pressure method is presented and measurements are made in order to test the limitations of this approach.
|
455 |
In Situ Measurements of Acoustic Properties of SurfacesMallais, Scott January 2009 (has links)
The primary goal of this work is to measure the acoustic properties of a surface in situ. This generally involves sound pressure measurements and a calculation of the acoustic reflection factor of a surface, which may then be used to calculate the
acoustic impedance or the acoustic absorption coefficient. These quantities are of use in acoustic simulations, architectural design, room acoustics and problems in noise control. It is of great interest to determine the performance of a particular surface where it is used, as opposed to measurements conducted in a laboratory. In situ measurements are not trivial, caution must be taken to ensure that high signal-to-noise levels are achieved and that the reflections of sound from the measurement environment are taken into consideration. This study presents five measurement methods that may be applied in situ. The acoustic absorption coefficient is calculated for each method on various surfaces spanning the whole range of absorption. Emphasis is placed on frequency resolution, in order to determine absorption characteristics in the bass region (50 Hz to 200 Hz). Advantages and disadvantages of
each method are demonstrated and discussed. Finally, the in situ implementation of the surface pressure method is presented and measurements are made in order to test the limitations of this approach.
|
456 |
Absorption of cobalt and nickel ions from sulphate media by oxalate-modified carbon pellets in a continuously stirred tank reactor.Kekana, Paul Thabo. January 2012 (has links)
M. Tech. Chemical Engineering. / Discusses the reactive properties of oxalate molecules on the surface of activated carbons (ACs) so that they can bind selectively with base metals. Therefore, the experimental plan covered three main axes of study: Chemical modification of AC adsorbent and characterization, adsorption studies in batch and continuous modes, and adsorption modelling.
|
457 |
Adsorption of water and carbon monoxide on Cu₂O(111) single crystal surfacesChristiaen, Anne-Claire 10 November 2009 (has links)
Water and CO adsorptions were studied over the stoichiometric and the oxygen-deficient Cu₂O(111) surfaces, using thermal desorption spectroscopy (TDS), ultraviolet photoelectron spectroscopy (UPS), and X-ray photoelectron spectroscopy (XPS). Water is the only desorbing species detected in TDS and the extent of dissociation is unaffected by the surface condition: ≃ 0.25 monolayers of water dissociate on Cu₂O(111) regardless of surface condition. The local defect environment around oxygen vacancies does not play a significant role in the activity of the Cu₂O(111) surface for the dissociation of water. CO is found to bind molecularly to the surface through the carbon atom and with a heat of adsorption of 22 kcal/mol, higher value than that of CO on Cu₂O(100) (16.7 kcal/mol). This suggests that the local geometry of adsorption sites may play an important role in the way CO binds to Cu₂O surfaces. Electronic changes upon CO adsorption and the higher heat of adsorption indicate an increased σ-donor character for CO, with some π-backbonding interactions. The local defect environment around oxygen vacancies does not appear to affect CO adsorption on Cu₂O(111) surfaces. / Master of Science
|
458 |
Caractérisation des matériaux commerciaux et synthétisés destinés à adsorber le méthane et l'oxyde nitreux présents dans des émissions gazeuses et modélisation de l'adsorptionDelgado Cano, Beatriz 24 April 2018 (has links)
Les activités humaines ont généré une augmentation importante de la concentration de gaz à effet de serre (GES) au cours des 150 dernières années, ce qui est relié à plusieurs problèmes environnementaux, tels que le réchauffement planétaire et les changements climatiques. Le secteur agricole contribue de 8 à 10% aux émissions totales de GES dans l'atmosphère, et les principaux GES émis sont le dioxyde de carbone (CO₂), le méthane (CH₄) et l’oxyde nitreux (N₂O). Le contrôle et la quantification de ces émissions requièrent des technologies qui permettent de les capturer et ou les dégrader, par exemple par adsorption. L'objectif du présent projet est de caractériser des matériaux qui puissent être utilisés comme adsorbants des GES et de décrire leurs cinétiques d’adsorption afin d’avoir l’information qui permette de sélectionner des adsorbants pour capturer le CH₄ et le N₂O à des basses concentrations et à température et pression ambiantes. Pour adsorber le CH₄, des adsorbants commerciaux et synthétiques ont été utilisés. Les adsorbants choisis ont été des zéolithes, un biocharbon conditionné au laboratoire et un ZIF (« Zeolitic imidazolate framework », ZIF-8) synthétisé au laboratoire. Ce dernier a été employé aussi pour adsorber du N₂O. La capacité d’adsorption de CH₄ et de N₂O a été évaluée pour chaque adsorbant par de tests dynamiques d’adsorption du gaz sous conditions ambiantes. Des zéolithes commerciales sous forme de billes ou d’extrudés et de poudre ont été caractérisées physiquement et chimiquement afin de corréler leurs propriétés avec la capacité d'adsorption de CH₄. L’effet de la structure et de la composition chimique sur la capacité d'adsorption de CH₄ ont été analysées. La capacité d'adsorption du CH₄ par les zéolithes commerciales a été étudiée à 30°C, à pression atmosphérique et à pressions partielles du CH₄ inférieures à 0,40 kPa (4000 ppm CH₄). L’isotherme d’adsorption de Freundlich a ajusté correctement aux données expérimentales. Il a été observé que la capacité d’adsorption du CH₄ augmentait avec la surface spécifique et le volume de pores, tandis qu’elle diminuait avec le rapport Si/Al et la température. Egalement, les zéolites sous forme de poudre ont présenté des capacités d’adsorption du CH₄ plus élevées que les zéolithes sous forme de billes ou d’extrudés. Du biocharbon obtenu par torréfaction du carton ciré a été traité chimiquement avec KOH et caractérisé. La caractérisation physique, chimique et thermique du carton ciré torréfié et des échantillons traités chimiquement permet de prédire la durabilité des échantillons et de corréler ses propriétés avec sa capacité d’adsorption. La capacité d'adsorption du CH₄ par le biocharbon a été étudiée à 30°C, à pression atmosphérique et à pressions partielles du CH₄ inférieures à 0,40 kPa (4000 ppm CH₄). L’isotherme d’adsorption de Freundlich a ajusté les données expérimentales. La capacité d'adsorption augmentait avec le temps de torréfaction et diminuait avec le traitement chimique. Le ZIF-8 a été obtenu par synthèse solvothermale et caractérisé physiquement et chimiquement afin de corréler ses propriétés avec sa capacité d'adsorption du CH₄ et du N₂O. La capacité d'adsorption du CH₄ et du N₂O a été étudiée à 30 °C et à pression atmosphérique, tandis que les pressions partielles du CH₄ et N₂O ont été inférieures à 0,40 kPa pour le CH₄ (4000 ppm CH₄) et à 0,10 kPa pour le N₂O (1000 ppm N₂O). L’isotherme d’adsorption de Freundlich ajuste correctement les donnés expérimentales. En plus, de l’adsorption d’un mélange de CH₄ et N₂O a été étudié et la courbe de percé du CH₄ est affecté pour le N₂O. Parmi les différents matériaux utilisés lors de l’adsorption du CH₄ à 30 ºC et à pressions partielles de CH₄ inférieures à 0,40 kPa (4000 ppm CH₄), les biocharbons présentent la capacité d’adsorption la plus élevée, suivis par le ZIF-8 et les zéolithes commerciales. / Human activities contributed with a significant increase in GHG concentrations over the past 150 years and they are related to environmental issues, such as global warming and climate change. The agricultural sector contributes 8 to 10% of total GHG emissions to the atmosphere, being carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) the main GHGs emitted. The control and quantification of these emissions requires technologies which can capture and or degrade these GHG, for example by adsorption. The objective of this project is to characterize adsorbents and to describe their adsorption kinetics in order to select the most suitable for the adsorption of CH₄ and N₂O at low concentration and at ambient temperature. For CH₄ adsorption, commercial and synthesized adsorbents were tested. The selected adsorbents were commercial zeolites, laboratory conditioned biochar and synthesized ZIF ("Zeolitic imidazolate framework"). ZIF was also used for N₂O adsorption. The adsorption capacity of CH₄ and N₂O for each adsorbent was evaluated by dynamic adsorption tests of the gas under atmospheric conditions. Commercial zeolites, in the form of pellets and powders, were physically and chemically characterized in order to correlate their properties with its CH₄ adsorption capacity. The effect of zeolites structure and chemical composition on the adsorption capacity of CH₄ was evaluated for zeolites in the form of pellets and powders. CH₄ adsorption capacity of commercial zeolites was studied at 30 °C, atmospheric pressure and at CH₄ partial pressures lower than 0.40 kPa (4000 ppm CH₄). Freundlich isotherm fitted the experimental data of CH₄ adsorption. The adsorption capacity of CH₄ increased with the surface area and pore volume, while decreased with the Si/Al ratio and temperature. Furthermore, the zeolites in powder form exhibited higher CH₄ adsorption capacities than those of zeolites in pellets. The torrefied cardboard was chemically treated with KOH and it was physically, chemically and thermally characterized to correlate its properties with its CH₄ adsorption capacity and to predict the durability of the samples. The adsorption capacity of CH₄ of torrefied cardboard was studied at 30 °C, atmospheric pressure and CH₄ partial pressures lower than 0.40 kPa (4000 ppm CH4). The Freundlich adsorption isotherm fitted correctly the experimental data. CH4 adsorption capacity increased with torrefaction time and decreased with chemical treatment. ZIF-8 was obtained by solvothermal synthesis and was physically and chemically characterized in order to correlate its properties with its adsorption capacity of CH₄ and N₂O. The adsorption capacity of CH₄ and N₂O was studied at 30 °C and atmospheric pressure, while the partial pressures of CH₄ and N₂O evaluated were lower than 0.40 kPa for CH₄ (4000 ppm CH₄) and lower than 0.10 kPa for N2O (1000 ppm N₂O). The experimental adsorption of CH₄ an N₂O was fitted by Freundlich isotherm. Furthermore, the adsorption of a mixture of CH₄ and N₂O was evaluated, being CH₄ breakthrough influenced in the presence of N₂O. Among the different materials used for CH₄ adsorption at 30 ºC and partial pressures lower than 0.40 kPa (4000 ppm CH₄), biocharbons presented the highest adsorption capacity, followed by ZIF- 8 and commercial zeolites.
|
459 |
Development of diode laser-based absorption and dispersion spectroscopic techniques for sensitive and selective detection of gaseous species and temperatureLathdavong, Lemthong January 2011 (has links)
The main aim of this thesis has been to contribute to the ongoing work with development of new diode-laser-based spectroscopic techniques and methodologies for sensitive detection of molecules in gas phase. The techniques under scrutiny are tunable diode laser absorption spectrometry (TDLAS) and Faraday modulation spectrometry (FAMOS). Conventional distributed-feedback (DFB) telecommunication diode lasers working in the near-infrared (NIR) region have been used for detection of carbon monoxide (CO) and temperature in hot humid media whereas a unique frequency-quadrupled external-cavity diode laser producing mW powers of continuous-wave (cw) light in the ultra violet (UV) region have been used for detection of nitric oxide (NO). A methodology for assessment of CO in hot humid media by DFB-TDLAS has been developed. By addressing a particular transition in its 2nd overtone band, and by use of a dual-fitting methodology with a single reference water spectrum for background correction, % concentrations of CO can be detected in media with tens of percent of H2O (≤40%) at T≤1000 °C with an accuracy of a few %. Moreover, using an ordinary DFB laser working in the C-band, a technique for assessment of the temperature in hot humid gases (T≤1000 °C) to within a fraction of a percent has been developed. The technique addresses two groups of lines in H2O that have a favorable temperature dependence and are easily accessed in a single scan, which makes it sturdy and useful for industrial applications. A technique for detection of NO on its strong electronic transitions by direct absorption spectrometry (DAS) using cw UV diode laser light has been developed. Since the electronic transitions are ca. two or several orders of magnitude stronger than of those at various rotational-vibrational bands, the system is capable of detecting NO down to low ppb∙m concentrations solely using DAS. Also the FAMOS technique has been further developed. A new theoretical description expressed in terms of both the integrated line strength of the transition and 1st Fourier coefficients of a magnetic-field-modulated dispersive lineshape functions is presented. The description has been applied to both ro-vib Q-transitions and electronic transitions in NO. Simulations under different pressures and magnetic field conditions have been made that provide the optimum conditions for both cases. A first demonstration and characterization of FAMOS of NO addressing its electronic transitions in the UV-region has been made, resulting in a detection limit of 10 ppb∙m. The characterization indicates that the technique can be significantly improved if optimum conditions can be obtained, which demonstrates the high potential of the UV-FAMOS technique.
|
460 |
Interphase mass transfer in various types of columnChu, I-cheng. January 1957 (has links)
Call number: LD2668 .T4 1957 C48 / Master of Science
|
Page generated in 0.0943 seconds