• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A CIGS Thin Film Solar Cell with an InGaP Secondary Absorption Layer

Kuo, Yu-Sheng 25 July 2012 (has links)
In this study, we add an additional layer above and under the CIGS absorber layer as a secondary absorption layer respectively. We made the conventional structure of ZnO/CdS/CIGS/Mo becomes the structure of ZnO/CdS/CIGS/InGaP/Mo and ZnO/CdS/InGaP/CIGS/Mo which can improve the conversion efficiency. And we translate the thickness proportion of Ga and the doping concentration to find out the best parameter. According to the simulation, the wavelength of EQE in 600 nm ~ 1200 nm for our proposed CIGS solar cell which the additional layer under CIGS layer has been improved when compared to the conventional CIGS solar cell. The short-circuit current density has been increased about 9 %. And the conversion efficiency has also been increased about 9 %.When the additional layer above the CIGS absorber layer, according to the simulation, the wavelength of EQE in 300 nm ~ 600 nm for our proposed CIGS solar cell is improved when compared with the conventional CIGS solar cell. The short-circuit current density has been improved about 7.7 %, the open-circuit voltage about 7.1 %, and the conversion efficiency about 20.6 %. The main reason is that when the InGaP absorption layer under the CIGS layer which can catch the light which can¡¦t be absorbed by CIGS layer. The InGaP absorption layer above the CIGS layer which can catch the light immediately.
2

Architectural Approaches for the Absorption Layer and their Impact on Organic Solar Cells

Beyer, Beatrice 25 February 2014 (has links) (PDF)
This study focuses on the architectural modification of pin-type small-molecule organic solar cells, in particular on the absorption layer and its influence on the key solar cell parameters, such as short circuit current density, fill factor and open circuit voltage. Three different approaches have been applied to improve the match between the solar spectrum and the spectral sensitivity of organic solar cells. In the first part, deposition parameters such as substrate temperature, gradient strength and (graded) absorption layer thickness are evaluated and compared to organic solar cells with homogeneously deposited absorption layers. Moreover, the gradient-like distribution of the absorption layer is characterized optically and morphological effects have been extensively studied. In order to isolate the origin of the efficiency improvement due to the graded architecture, voltage-dependent spectral response measurements have been performed and gave new insights. The second part concentrates on the efficient in-coupling of converted UV light, which is usually lost because of the cut off properties of organic light in-coupling layers. Via Förster resonance energy transfer, the absorbed UV light is re-emitted as red light and contributes significantly to higher short circuit current densities. The correlation between doping concentration, simple stack architecture modifications and the performance improvement is duly presented. In the third and last part, the impact of tri-component bulk heterojunction absorption layers is investigated, as these have potential to broaden the sensitivity spectrum of organic solar cells without chemical modification of designated absorber molecules. Along with the possibility to easily increase the photocurrent, an interesting behavior of the open circuit voltage has been observed. Knowledge about the impact of slight modifications within the solar stack architecture is important in order to be able to improve the device efficiency for the production of cheap and clean energy.
3

Architectural Approaches for the Absorption Layer and their Impact on Organic Solar Cells

Beyer, Beatrice 13 December 2013 (has links)
This study focuses on the architectural modification of pin-type small-molecule organic solar cells, in particular on the absorption layer and its influence on the key solar cell parameters, such as short circuit current density, fill factor and open circuit voltage. Three different approaches have been applied to improve the match between the solar spectrum and the spectral sensitivity of organic solar cells. In the first part, deposition parameters such as substrate temperature, gradient strength and (graded) absorption layer thickness are evaluated and compared to organic solar cells with homogeneously deposited absorption layers. Moreover, the gradient-like distribution of the absorption layer is characterized optically and morphological effects have been extensively studied. In order to isolate the origin of the efficiency improvement due to the graded architecture, voltage-dependent spectral response measurements have been performed and gave new insights. The second part concentrates on the efficient in-coupling of converted UV light, which is usually lost because of the cut off properties of organic light in-coupling layers. Via Förster resonance energy transfer, the absorbed UV light is re-emitted as red light and contributes significantly to higher short circuit current densities. The correlation between doping concentration, simple stack architecture modifications and the performance improvement is duly presented. In the third and last part, the impact of tri-component bulk heterojunction absorption layers is investigated, as these have potential to broaden the sensitivity spectrum of organic solar cells without chemical modification of designated absorber molecules. Along with the possibility to easily increase the photocurrent, an interesting behavior of the open circuit voltage has been observed. Knowledge about the impact of slight modifications within the solar stack architecture is important in order to be able to improve the device efficiency for the production of cheap and clean energy.

Page generated in 0.0911 seconds