• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 139
  • 27
  • 20
  • 8
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 467
  • 133
  • 110
  • 62
  • 45
  • 44
  • 33
  • 30
  • 29
  • 26
  • 26
  • 24
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An investigation of polyvinyl acetate as a medium in painting

Collins, Robert Harry, 1924- January 1954 (has links)
No description available.
12

The photo-polymerization of styrene and vinyl acetate ...

Vernon, Arthur Andrew, January 1931 (has links)
Thesis (Ph. D.)--Princeton University, 1930.
13

The mechanism of carbohydrate oxidation the oxidation of glucose by copper acetate ...

Strouse, George Clifford, January 1900 (has links)
Thesis (Ph. D.)--Ohio state University, 1927.
14

Acetate metabolism in Geobacillus thermoglucosidasius and strain engineering for enhanced bioethanol production

Hills, Christopher January 2015 (has links)
Social, economic and political pressures have driven the development of renewable alternatives to fossil fuels. Biofuels, such as bioethanol, have proved to be successful alternatives. Mature technologies are crop-based, but this has brought criticism due to the conflicting use of land for fuel versus food production. Therefore, bioethanol production technologies have shifted to utilising the sugars that derive from the degradation of lignocellulosic biomass. The thermophilic, Gram-positive bacterium, Geobacillus thermoglucosidasius, can naturally utilise a large fraction of these sugars, and metabolic engineering has been used to create a strain that produces ethanol as the major product of fermentation. This strain, G. thermoglucosidasius TM242 (Δldh, Δpfl, pdhup), does however, produce small but significant quantities of acetate, an undesirable by-product of fermentation. Therefore, acetate metabolism in the G. thermoglucosidasius TM242 strain was the focus of this study. During fermentation, ethanol is generated from the central metabolite acetyl-CoA through the activities of a bifunctional enzyme: aldehyde dehydrogenase/alcohol dehydrogenase (ADHE). On the other hand, acetate is generated from acetyl-CoA through catalysis by phosphotransacetylase (PTA) and acetate kinase (AK). Acetate metabolism in G. thermoglucosidasius TM242 was studied in this project by investigating the enzyme activities governing flux from acetyl-CoA, and the feasibility of reduced acetate production was investigated by a pta-deletion strategy. This thesis reports the characterisation of PTA and AK, by studying activities from both native cell lysates and recombinantly expressed proteins. The results indicate that the activities of PTA and AK are greater than those of ADHE, suggesting that the potential metabolic flux is greater towards acetate production than to ethanol. However, the ethanol yield from G. thermoglucosidasius TM242 fermentations is greater than that of acetate, suggesting the existence of a regulatory mechanism controlling acetyl-CoA flux. Several possible regulatory mechanisms were studied in this project and are reported here. The viability of creating a strain that reduces acetate accumulation, and potentially increases ethanol yields, was investigated and reported in this thesis. The gene encoding PTA was deleted from G. thermoglucosidasius TM242, and the resulting strain was characterised. The Δpta strain had approximately 5% of the PTA activity measured in TM242, but acetate was still generated from pentose and hexose fermentations. Additional phosphotransacylase (PTAC) enzymes were discovered in G. thermoglucosidasius TM242 that could catalyse the conversion of acetyl-CoA and orthophosphate to acetyl-phosphate and CoA. A series of PTAC null strains were created and analysed, the results of which indicated that phosphotransbutyrylase (PTB) could be involved in acetate production in vivo. It was discovered that the cell lysates of G. thermoglucosidasius strains carrying deletions to both pta and ptb could no longer catalyse the conversion of acetyl-CoA and orthophosphate to acetyl-phosphate and CoA. However, these strains still accumulated acetate, suggesting the presence of alternative acetate-producing pathways in this organism. In addition, G. thermoglucosidasius strains carrying deletions to both pta and ptb could ferment glucose but not xylose, suggesting that the production of ATP by the PTA-AK pathway is crucial for micro-aerobic growth on pentose sugars.
15

Potassium Acetate Deicer and Concrete Durability

Ghajar-Khosravi, Sonia 07 December 2011 (has links)
An investigation on the damaging effects of potassium acetate deicer (KAc) on concrete durability was conducted. Different SCM replacement levels were used. ASTM C 1293 and ASTM C 1260 test methods results indicated that KAc is capable of inducing alkali-silica reaction (ASR) expansion in specimens containing reactive aggregate. Class C fly ash was ineffective even at a replacement level of 45%. Class F fly ash and slag were effective in mitigating ASR expansion for specimens exposed to diluted (25% by weight) KAc. KAc showed an increase in pH value upon exposure to concrete specimens. Concrete specimen without SCM and exposed to deicers had higher [K]/[Na] molar ratio near the surface but ions penetrated less compared to specimens containing SCM. ASTM C 666 and MTO LS-412 test methods results showed that air-entrained concrete slabs and prisms without SCM and exposed to KAc are resistant to scaling and freezing and thawing damage.
16

Potassium Acetate Deicer and Concrete Durability

Ghajar-Khosravi, Sonia 07 December 2011 (has links)
An investigation on the damaging effects of potassium acetate deicer (KAc) on concrete durability was conducted. Different SCM replacement levels were used. ASTM C 1293 and ASTM C 1260 test methods results indicated that KAc is capable of inducing alkali-silica reaction (ASR) expansion in specimens containing reactive aggregate. Class C fly ash was ineffective even at a replacement level of 45%. Class F fly ash and slag were effective in mitigating ASR expansion for specimens exposed to diluted (25% by weight) KAc. KAc showed an increase in pH value upon exposure to concrete specimens. Concrete specimen without SCM and exposed to deicers had higher [K]/[Na] molar ratio near the surface but ions penetrated less compared to specimens containing SCM. ASTM C 666 and MTO LS-412 test methods results showed that air-entrained concrete slabs and prisms without SCM and exposed to KAc are resistant to scaling and freezing and thawing damage.
17

17alpha-OH trenblone and its role in the metabolism and pharmacokinetics of the anabolic agent trenblone acetate

Phillips, M. W. A. January 1984 (has links)
No description available.
18

The mechanism involved in the methylation of cellulose acetate and of cellulose dissolved in trimethylbenzylammonium hydroxide

Johnston, Gerald G. (Gerald Gale) 01 January 1940 (has links)
No description available.
19

A study of the reactions of ergosterol with mercuric acetate and with anhydrous auric chloride

Iob, Leona Vivian, January 1937 (has links)
Thesis (Ph. D.)--University of Chicago, 1935. / Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois." Includes bibliographical references.
20

The mechanism of carbohydrate oxidation the action of copper acetate solutions on fructose ...

Waring, Charles Edward, January 1900 (has links)
Thesis (Ph. D.)--Ohio State University, 1927. / Autobiography.

Page generated in 0.033 seconds