• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 33
  • 30
  • 14
  • 8
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 283
  • 106
  • 45
  • 44
  • 44
  • 43
  • 40
  • 37
  • 32
  • 29
  • 29
  • 29
  • 27
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation of Extracellular Signal-Regulated Kinase by Histone Deacetylase 6

Wu, Jheng-Yu 07 July 2017 (has links)
Extracellular signal-regulated kinases 1/2 (ERK1/2) are important kinases regulating cell proliferation and cell migration, and have been established as therapeutic targets for cancer treatment. Previously, we found that ERK1 phosphorylates histone deacetylase 6 (HDAC6) to regulate its enzymatic activity. However, whether HDAC6 reciprocally modulates ERK1 activity is unknown. Here, we have discovered that ERK1/2 are acetylated proteins and shown that HDAC6 manipulates ERK1’s kinase activity via deacetylation. We demonstrated that both ERK1 and ERK2 interact with HDAC6 physically. We showed that the acetylation level of GST-ERK1/2 increased in a dose- and time-dependent manner upon treatment with a pan-HDAC inhibitor, Trichostatin A. Furthermore, the treatment by HDAC6-specific inhibitor, ACY-1215, also increased the level of acetylated GST-ERK1/2. We also noted that ERK1/2 acetylation levels increased in HDAC6-knockout mouse embryonic fibroblasts and in HDAC6-knockdown A549 cell lines compared with controls. In addition, we determined that acetyltransferases CBP and p300 acetylate ERK1/2. We have identified novel acetylation sites located in ERK1 and ERK2 by mass-spectrometry analysis. Among these acetylation sites, ERK1 lysine 72 acetylation status is related to ERK1 phosphorylation. The acetylation-mimicking mutant exhibits a decreased kinase activity toward ELK1, while the deacetylation-mimicking mutant exhibits a similar level of kinase activity as the wild-type ERK1, suggesting that acetylation/deacetylation alters ERK1 enzymatic activities. Taken together, our results suggest that HDAC6 may regulate ERK1’s kinase activity via deacetylation of its lysine 72 residue.
32

Cyclic AMP-Regulated Protein Lysine Acetylation In Mycobacteria

Nambi, Subhalaxmi 07 1900 (has links) (PDF)
Tuberculosis continues to be one of the major causes of morbidity and mortality worldwide. Several mycobacterial species such as M. tuberculosis and M. africanum are responsible for causing this disease in humans. Reports of high cAMP levels in mycobacterial species (as compared to other bacteria such as E. coli) suggested that this second messenger may play an important role in the biology of mycobacteria. Further, it was reported that infection with mycobacteria led to an increase in the cAMP levels within the host macrophage. More recent studies have shown that this cAMP increase may be due to bacterially derived cAMP, hinting at a role for cAMP in mycobacterial pathogenesis. Given this background, the study of cAMP in mycobacteria proves to be an interesting field of research. Signalling through cAMP involves an interaction of this cyclic nucleotide with a cAMP-binding protein. These proteins typically contain a cyclic nucleotide-binding domain (CNB domain) linked to another (effector) domain. The CNB domain is thought to allosterically control the activity of the effector domain, thus mediating cellular responses to altered cAMP levels. For example, in the case of eukaryotic protein kinase A (PKA), binding of cAMP to the CNB domain results in relieving the inhibitory effects of the regulatory subunit on the catalytic subunit. The catalytic subunit then phosphorylates its target substrates, eliciting a variety of cellular responses. This work involves the characterisation of novel cAMP-binding proteins from mycobacteria, in an attempt to better understand cAMP signalling mechanisms in these organisms. The genome of M .tuberculosis H37Rv is predicted to code for ten CNB domain-containing proteins. One of these genes is Rv0998 (KATmt). KATmt was found to contain a GCN5 related N-acetyltransferase (GNAT) domain linked to a CNB domain. KATmt finds orthologues throughout the genus Mycobacterium, thereby suggesting its role in the basic physiology of these organisms. In addition, such a domain fusion is unique to mycobacteria and hence promises to deliver insights into the biology of this medically important genus. Presented here are the biochemical and functional characterisation of KATmt and its orthologue from M. smegmatis, MSMEG_5458 (KATms). Recombinant KATms bound cAMP with high affinity, validating the functionality of its CNB domain. Mutational and analogue-binding studies showed that the biochemical properties of the CNB domain were similar to mammalian protein kinase A and G-like CNB domains. The substrate for the GNAT acetyltransferase domain was identified to be a universal stress protein from M. smegmatis (MSMEG_4207). MSMEG_4207 was acetylated at a single lysine residue (Lys 104) by KATms in vitro. Further, cAMP binding to KATms increased the initial rate of acetylation of MSMEG_4207 by 2.5-fold, suggesting allosteric control of acetyltransferase activity by the CNB domain. To ascertain that KATms acetylated MEMEG_4207 in vivo, an in-frame deletion of the KATms gene was generated in M. smegmatis (ΔKATms). MSMEG_4207 was immunoprecipitated from wild-type M. smegmatis and the ΔKATms strains, followed by mass spectrometric analysis. Acetylated MSMEG_4207 was only present in the wild-type strain, confirming that KATms and MSMEG_4207 is an in vivo enzyme-substrate pair. Key biochemical differences were observed between KATms and KATmt. KATmt had an affinity for cAMP in the micromolar range, close to three log orders lower than that of KATms. In addition, KATmt showed strictly cAMP-dependent acetylation of MSMEG_4207. This demonstrates that orthologous proteins often evolve under varied selective pressures, resulting in divergent properties. Using a combination of bioluminescence resonance energy transfer (BRET) and amide hydrogen/deuterium exchange mass spectrometry (HDXMS), the conformational changes that occur upon cAMP binding to the CNB domain of KATms were monitored. A BRET-based conformation sensor was constructed for KATms by inserting KATms between GFP2 (green fluorescent protein) and Rluc (Renilla luciferase). An increase in BRET upon cAMP binding to the sensor was observed. HDXMS analysis revealed that besides the CNB domain, the only other region that showed conformational changes in KATms upon cAMP-binding was the linker region. To confirm that the linker region was important in propagating the effects of cAMP-binding to the acetyltransferase domain, an additional construct for BRET analysis encompassing the CNB domain and the linker region was generated. The magnitude of the increase in BRET was similar to the full length BRET-based sensor, validating the crucial role of the linker region in propagating cAMP-mediated conformational changes. A ‘PXXP’ motif found in the linker region, showed maximum exchange in HDXMS analysis. Mutation of both these proline residues to alanine in KATms, as well as KATmt, resulted in decoupling of cAMP-binding and allosteric potentiation of acetyltransferase activity. In contrast to the intricate parallel allosteric relays observed in other CNB domain-containing proteins, the CNB domain in KATms functions as a simpler cyclic nucleotide binding-induced switch involving stabilization of the CNB and linker domain alone. Therefore, KATms is an example of a primordial CNB domain where conformational changes are a consequence of binding-induced ordering alone. Using a computational approach, putative substrate proteins of KATmt from M. tuberculosis were identified. The substrate specificity of lysine acetyltransferases is determined loosely by a consensus sequence around the lysine residue which is acetylated. Using this property of protein acetyltransferases, the genome of M. tuberculosis H37Rv was mined for proteins harboring lysine residues in a similar sequence context as seen in MSMEG_4207. In vitro biochemical analysis of some of the predicted substrates helped confirm a subset of enzymes belonging to the fatty acyl CoA synthetase (FadD) class as substrates of KATmt. The acetylation of FadDs by KATmt was cAMP-dependent. In each of the four proteins tested, acetylation was found to occur at a single conserved lysine residue. To confirm that FadDs were acetylated by KATmt in vivo, BCG_1055, the orthologue of KATmt in M. bovis BCG, was deleted using the specialised transduction method. FadD13, one of the FadDs acetylated by KATmt in vitro, was immunoprecipitated from wild-type M. bovis and the ΔBCG_1055 strains using a FadD13-specific polyclonal antibody. Acetylated FadD13 was almost completely absent in ΔBCG_1055 but substantial amounts of acetylated FadD13 were present in the wild-type strain, indicating that FadD13 was indeed an in vivo substrate of KATmt. The functional consequences of acetylation of FadDs were analysed using an in vitro fatty acyl CoA synthetase assay. The activities of FadD2 and FadD13 were inhibited on acetylation with KATmt, while acetylation of FadD5 resulted in the formation of a novel product. Therefore, modification of the highly conserved lysine residue in these enzymes by acetylation led to loss or alteration of their enzymatic activity, suggesting that acetylation may be used as a regulatory mechanism to modulate the activities of some of the FadDs by KATmt in a cAMP-dependent manner. Given the extensive role of FadDs in cell wall biosynthesis and lipid degradation in mycobacteria, it seems possible that post-translational control by KATmt in a cAMP-dependent manner constitutes a novel mechanism utilised by these bacteria to regulate these pathways. This direct regulation of protein lysine acetylation by cAMP appears to be unique to mycobacteria, as orthologues of KATmt are not found outside this genus. In addition, the biochemical differences between KATmt and its orthologue from M. smegmatis KATms, indicate species specific variation, on a common theme. This study is the first report of protein lysine acetylation in mycobacteria. In addition to the identification of several proteins subject to this post-translational modification, the effect of acetylation on the enzymatic activities of some of them has been elucidated.
33

A Systems Level Characterization of the Saccharomyces Cerevisiae NuA4 Lysine Acetyltransferase

Mitchell, Leslie January 2011 (has links)
Lysine acetylation is a post-translational modification (PTM) studied extensively in the context of histone proteins as a regulator of chromatin dynamics. Recent proteomic studies have revealed that as much as 10% of prokaryotic and mammalian proteins undergo lysine acetylation, and as such, the study of its biological consequences is rapidly expanding to include virtually all cellular processes. Unravelling the complex regulatory network governed by lysine acetylation will require an in depth knowledge of the lysine acetyltransferase enzymes that mediate catalysis, and moreover the development of methods that can identify enzyme-substrate relationships in vivo. This is complex task and will be aided significantly through the use of model organisms and systems biology approaches. The work presented in this thesis explores the function of the highly conserved NuA4 lysine acetyltransferase enzyme complex in the model organism Saccharomyces cerevisiae using systems biology approaches. By exploiting genetic screening tools available to the budding yeast model, I have systematically assessed the cellular roles of NuA4, thereby identifying novel cellular processes impacted by the function of the complex, such as vesicle-mediated transport and the stress response, and moreover identified specific pathways and proteins that are impacted by NuA4 KAT activity, including cytokinesis through the regulation of septin protein dynamics. Moreover, I have developed a mass spectrometry-based technique to identify NuA4-dependent acetylation sites amongst proteins that physically interact with NuA4 in vivo. Together this work demonstrates the diversity of processes impacted by NuA4 function in vivo and moreover highlights the utility of global screening techniques to characterize KAT function.
34

H2A.Z – a molecular guardian of RNA polymerase II transcription in African trypanosomes / H2A.Z – eine molekulare Wächterin der RNA Polymerase II Transkription in Afrikanischen Trypanosomen

Kraus, Amelie Johanna January 2021 (has links) (PDF)
In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7% of the total T. brucei genome (humans: 0.00000156%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes. / In Eukaryoten muss die genomische DNA zusammen mit Histonproteinen zu Nukleosomen und weiter zu kompakten Chromatinstrukturen verpackt werden, damit sie in den Zellkern passt. Diese Organisation behindert die Transkription bei jedem Schritt, bei dem die Polymerase an der DNA bindet. Während der Transkription – dem Prozess bei dem die in der DNA gespeicherte Erbinformation in viele transportable RNA Molekülen umgewandelt wird – stellen Nukleosomen ein physikalisches Hindernis für das Vorankommen der Polymerase dar. Aus diesem Grund wird die Transkription üblicherweise von Prozessen begleitet, die für die Destabilisierung der Nukleosomen sorgen, wie zum Beispiel post-translationale Modifizierung (PTM) der Histone oder der Austausch von kanonischen Histonproteinen durch eine ihrer Varianten. Soweit bisher bekannt ist Histonacetylierung am besten dafür geeignet, eine offene Chromatinstruktur bereit zu stellen. Die Lysinmodifizierung kann Interaktionen zwischen der DNA und den Histonen innerhalb eines Nukleosomes destabilisieren und als Andockstelle für einige Proteinkomplexe sogenannte Chromatin-Modellierer fungieren, die die Zusammensetzung eines Nukleosomes verändern können. Zum Beispiel, kann Acetylierung am Histon H4 das „Zusammenfalten“ des Chromatins erschweren und den Austausch von kanonischem H2A mit ihrer Variante H2A.Z an den Transkriptiosinitiationsstellen (TSSen) in vielen eukaryotischen Organismen, Menschen eingeschlossen, stimulieren. Wie Histon H4, kann auch H2A.Z post-translationell acetyliert werden und wie acetyliertes H4, findet man auch acetyliertes H2A.Z vor allem an TSSen. Deswegen geht man davon aus, dass es sehr wichtig für die Transkriptioninitiierung ist. Allerdings war es bisher nicht möglich, die Ursache und Wirkung von H2A.Z Acetylierung genauer zu untersuchen. Genom-weite Chromatinprofilstudien wie z.B. ChIP-Seq ermöglichen es die genomische Lokalisierung von vielen Histon-Modifizierungen und -Varianten zu bestimmen. Dennoch reichen sie nicht dafür aus alle Faktoren, die für die Bildung einer bestimmten Chromatinstruktur notwendig sind, gleichzeitig herauszufinden. Das würde voraussetzen, dass man alle Merkmale der genomischen Stelle kennt. Bisher waren Analysen von spezifischen Chromatinstellen nur erfolgreich, wenn das Chromatin von einer repetitiven Region, wie z.B. Telomeren, stammt. In meiner Doktorarbeit verwendete ich den einzelligen Parasiten Trypanosoma brucei als Modelsystem für Chromatinbiologie. Dabei machte ich mir dessen Chromatinorganisation zunutze, die eher untypisch für einen eukaryotische Organismus ist. TSSen machen hier ungefähr 7% des gesamten Genoms aus (Mensch: 0.00000156%). Protein-kodierende Gene sind in langen polycistronischen Transkriptionseinheiten (PTE) angeordnet. Jede dieser Einheiten besitzt eine eigene TSS, die vor der PTE liegt, und bis zu 10 kb lang sein kann. Jedoch, wie in anderen Eukaryoten, sind an den TSSen Nukleosomen angereichert, die sich durch acetylierte Histone und den Einbau der Histonvariante H2A.Z auszeichnen. Aus diesen Gründen verwendete ich T. brucei, um während meiner Doktorarbeit die Chromatinstrukturen, die TSSen auszeichnen, genauer zu untersuchen und die Faktoren, die bei der H2A.Z Positionierung und dadurch bei der Transkriptionsregulation in Eukaryoten eine Rolle spielen, herauszufinden. Dafür etablierte ich zuerst eine Methode, mit der man Chromatin von einer bestimmten genomischen Stelle isolieren kann und die es mir ermöglichen würde, die Merkmale von TSS-spezifischen und -unspezifischen Chromatin zu identifizieren. Später konnte ich das entwickelte Protokoll mit einer Methode zur Quantifizierung von Lysin-spezifischen Histonacetylierung kombinieren. Dadurch konnte ich herausfinden, dass Nukleosomen an trypanosomischen TSSen stark acetyliertes H2A.Z und H4 enthalten und dass für diese Modifizierungen die Histonacetyltransferasen HAT1 und HAT2 verantwortlich sind. Eine Reduzierung der HAT2-Levels führte zu einer Reduzierung von H4 Acetylierung, verschlechterte die gezielte H2A.Z Positionierung und führte dazu, dass die Transkriptioninitiierung sich verlagerte. Wohingegen eine Reduzierung von HAT1, die zwar nur einen kleinen Einfluss auf die H2A.Z Positionierung hatte, eine sehr starke Verringerung von acetyliertem H2A.Z und der Transkriptionsrate zur Folge hatte. Durch meine Ergebnisse konnte ich zeigen, dass in T. brucei, einem evolutionär divergenten eukaryotischem Organismus, die Prozesse der Histonacetylierung, H2A.Z Positionierung und Transkriptionsinitiierung sehr stark miteinander verbunden sind. Meine Arbeit ist des weiteren ein Beweis dafür, dass T. brucei ein sehr wichtiger Modellorganismus für die Forschung an Chromatin ist. Insgesamt erlauben meine Ergebnisse die Schlussfolgerung, dass H2A.Z, egal ob modifiziert oder nicht, ein Herausstellungsmerkmal für TSSen ist, während acetyliertes H2A.Z essentiell für die Transkriptionsinitiierung darstellt. Zusammengefasst, weisen die Daten meiner Doktorarbeit darauf hin, dass die Etablierung von bestimmten Chromatinstrukturen an TSSen eines der frühesten entwickelten Mechanismen zur Kontrolle der Transkriptionsinitiierung in Eukaryoten ist.
35

Identification of New Roles for Histone Acetyltransferase 1

Agudelo Garcia, Paula A. 11 August 2017 (has links)
No description available.
36

Novel N(Epsilon)-Acetyl-Lysine Analogs: Synthesis and Application

Jamonnak, Nuttara 26 August 2008 (has links)
No description available.
37

Novel Patterns for Nucleosome Positioning: From in vitro to in vivo

Bates, David Andrew 09 December 2022 (has links) (PDF)
The fundamental unit of chromatin is the nucleosome, which consists of a core of eight proteins wrapped by DNA. This core is composed of four pairs of histone proteins: H2A, H2B, H3, and H4. The DNA wraps around the protein core ~1.7 times, facilitating compaction of DNA length in the cell. Further, the location of nucleosomes makes genomic elements encoded in the DNA, such as promoters or enhancers, accessible or inaccessible to RNA polymerase and transcription factors. Thus, where nucleosomes are located (or positioned), can play a major role in transcription or other cellular processes. Additionally, histone proteins are frequently post-translationally modified, and these modifications further play a role in cellular processes, and in some cases are even required for specific protein function. What positions nucleosomes, and the downstream results of positioning or post-translational modifications (PTMs) is a topic of prolific study. Nucleosome formation is not random. In vivo it is believed that chromatin remodelers are the primary determinant of where nucleosomes form, while in vitro the DNA itself is the primary determinant. Formation of nucleosomes in vitro is a potent tool to elucidate fundamentals of chromatin. Considering that in vitro nucleosome formation is dependent on free energy, morphology and base composition of the DNA influence the free energy of formation. We found that the ends of linear DNA fragments were much more likely to have in vitro nucleosomes form on them. While this has the potential to bias results, based on our observations we could not find any significant alteration of the overall underlying DNA sequence composition due to the end preference observed. Histone proteins frequently receive the PTMs of methylation or acetylation. Histone methylation is typically indicative of repressed genes, while histone acetylation is typically indicative of active genes. In vivo the addition and removal of methylation and acetylation is highly dynamic. We hypothesized that the histone PTMs of methylation and acetylation also played a role in where nucleosomes formed. Comparing both in vivo and in vitro datasets, we observed strikingly similar patterns of nucleosomes for several histone methylations and acetylations, suggesting that these PTMs do indeed direct nucleosome formation. Upon further investigation, the underlying DNA sequence preferences change when compared to unmodified nucleosomes. This suggests that the genome is encoded to position these marks in locations where they are likely to be needed.
38

Primary Cilia Dynamics, Morphology and Acetylation are Abnormal in Huntington’s Disease Cell Models

Woloshansky, Tanya S. 25 April 2015 (has links)
<p>The primary cilium is a singular signaling organelle found on most mammalian cell types. Dysfunction of the primary cilium or associated structures form a group of genetic disorders called ciliopathies. Recently, Huntington’s disease (HD), a monogenetic neurodegenerative disorder, was classified, at least in part, as a ciliopathy. How the primary cilium contributes to the pathogenesis of HD is the focus of this work. We demonstrate that huntingtin localization to the basal body or primary cilium is dependent on the phosphorylation status of serine residues 13 and 16. Furthermore, we demonstrate that, compared to controls, HD cell models have an increased number of cells with a primary cilium and that these cells have higher presence of huntingtin within the ciliary compartment. The primary cilia that form in HD cell lines demonstrate abnormal dynamics and morphology with bulging tips, characteristic of defective retrograde trafficking. We also demonstrate that alpha tubulin acetyltransferase 1 (αTAT1) expression and localization is increased in the primary cilium of HD cell lines. Subsequently, the primary cilium of HD cell lines are highly acetylated when compared to controls. These data support that primary cilia structure, ciliogenesis and ciliome are altered in HD.</p> / Master of Science (MSc)
39

THE ROLE OF POLYAMINE ACETYLATION IN REGULATING ADIPOSE TISSUE METABOLISM

Liu, Chunli January 2011 (has links)
Because excessive body weight is a major health issue, there is an urgent need to understand all physiological mechanisms relating to control of fat deposition/mobilization. Here we investigated the linkage between polyamine metabolism and fat homeostasis that we recently discovered to operate in mice. Our previous data show that the expression level of spermine/spermidine acetyltransferase (SSAT), a polyamine catabolic enzyme, potently modulates body fat content of mice. In particular, our data indicated that SSAT overexpressing mice (SSAT-Tg) have reduced acetyl CoA levels and are lean while SSAT null mice (SSAT-ko) are obese. Since the acetyl CoA/malonyl CoA levels are critical for control of free fatty acid synthesis and oxidation via malonyl CoA regulation of CPT-1 (carnitine palmitoyltransferase-1), we hypothesized that genetic manipulation of SSAT alters body fat accumulation by activating of AMP-activated protein kinase pathway and thus has a global effect on energy metabolism. To test this hypothesis, we performed a combination of proteomics and antibody based expression studies in white adipose tissue (WAT) of SSAT-ko, SSAT-wt and SSAT-tg: We identified 9 proteins in WAT that show an increasing gradient across SSAT-ko, SSAT-wt and SSAT-tg, all of which have a connection with acetyl-CoA consumption. These include: a) glycolytic enzymes (aldolase, enolase, pyruvate dehydrogenase); b) TCA cycle enzymes (aconitate hydratase, malate dehydrogenase); c) fatty acid lipolysis and beta oxidation enzymes (hormone-sensitive lipase, monoglyceride lipase, 3-hydroxyacyl CoA dehydrogenase). Additional expression studies using Western blots indicated that acetyl CoA regulates metabolism by AMP-activated protein kinase pathway. Furthermore, to determine how tissue-specific changes in SSAT expression will impact fat accumulation and the precise role of SSAT expression status in fat homeostasis and obesity, we generated adipose-specific SAT1 knockout (FSAT1KO) mice using the Cre-Lox method. On 27-week-old, FSAT1KO mice have higher average body weight than wild type mice (WT: 45.13 ± 2.23 g vs. FSAT1KO: 52.28 ± 1.62 g, p&lt;0.05) when fed a high-fat diet. Larger lipid droplets and lipid accumulation were present in FSAT1KO mouse livers compared to the control WT mice. Several proteins involved in fat metabolism were found to be up-regulated in FSAT1KO mice using GeLC-MS proteomics approach. These data indicated that the lack of SSAT activity in adipose tissue, but not liver or muscle, drives the phenotypic changes in SSAT-ko obese mice. Our interpretation of these results is that genetic modulation of SSAT causes a combination of changes in WAT that involve lipolysis, energy metabolism and calorie loss resulting from polyamine export. In summary, the data indicate that modulation of SSAT activity affects fat metabolism and calorie balance. / Biochemistry
40

Evaluation of Surface Acetylated Bacterial Cellulose for Antibacterial Wound Dressing Applications

Bertucio, Timothy Joseph 28 June 2022 (has links)
Complications during the healing process of skin wounds often arise due to infection by pathogenic bacteria. Bacterial hydrolytic enzymes degrade the host tissue while biofilms can shield the bacterial cells from the host's immune response. Wound dressings with bacteriostatic or bactericidal properties are a promising solution. This study investigated the potential of surface acetylated bacterial cellulose as a novel antibacterial wound dressing. Hydroxyl groups on the surface of bacterial cellulose were substituted with acetyl groups using acetic anhydride in a citric acid-catalyzed reaction. The resulting ester linkages between the acetyl groups and bacterial cellulose surface were hypothesized to be cleaved by bacterial esterases or other hydrolytic enzymes such that acetic acid, a well-known antibacterial compound, will be produced leading to the death of the bacterial cells. Surface acetylation was confirmed via FTIR and its effect on the morphology of bacterial cellulose was analyzed with FESEM and XRD while the degree of substitution was determined by HPLC-UV. Indirect contact human cell cytotoxicity assays using extracts from surface acetylated bacterial cellulose showed no cytotoxic effect on human umbilical vein endothelial cells. Two types of antibacterial assays were performed in which surface acetylated bacterial cellulose was exposed to Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa which were selected as model bacteria for Gram-positive, Gram-negative, and pathogenic bacterial species, respectively. Neither assay showed a reduction of bacterial cell viability. Further research is needed to determine if the acetyl ester linkages on the surface of bacterial cellulose are susceptible to cleavage by bacterial esterase enzymes. / Master of Science / The healing of skin wounds is frequently complicated by infection of the wound with harmful bacteria. A potential remedy could be wound dressings that kill such bacteria. Bacterial cellulose is a naturally occurring biomaterial with multiple properties that make it an ideal material for wound dressings. Pure bacterial cellulose has no inherent antibacterial properties but can be chemically modified with a separate substance that is antibacterial such as acetic acid. This study investigates the potential of chemically modified bacterial cellulose in antibacterial wound dressing applications. The material may release acetic acid in the presence of bacteria and cause cell death. A series of human cell and antibacterial assays were carried out to test the ability of the modified bacterial cellulose to inhibit bacterial growth as well as any potential harmful effect on human cells. While it showed no adverse effects on human cells, the modified bacterial cellulose did not reduce bacterial cell viability.

Page generated in 0.0767 seconds