• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 26
  • 11
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Characterization of mitochondrial C₁-tetrahydrofolate synthase transcript and protein expression in adult and embryonic mammalian tissues and the role of the mitochondrial one-carbon pathway in the cytoplasmic methyl cycle

Pike, Schuyler Todd, 1966- 01 October 2012 (has links)
In eukaryotes, folate-dependent one-carbon (1-C) metabolism is composed of two parallel pathways compartmentalized to either the cytoplasm or mitochondria. In each, 1-C units, carried on tetrahydrofolate (THF), are interconverted by four catalytic activities. Serine hydroxymethyltransferase transfers the 3-carbon of serine to THF forming 5,10-methylene-THF which is oxidized in 3 successive steps to formate via the intermediates, 5,10-methenyl-THF and 10-formyl-THF. Because of the redox potential in each compartment, 1-C flux is thought by most authors to be from formate to serine in the cytosol and in the opposite direction in mitochondria. Transport of serine, glycine and formate across the mitochondrial membranes creates a 1-C cycle. All eukaryotes characterized to date contain a cytoplasmic trifunctional C1-THF synthase possessing 5,10-methylene-THF dehydrogenase, 5,10-methenyl-THF cyclohydrolase and 10-formyl-THF synthetase activities which interconvert the catalytic intermediates between 5,10-methylene-THF and formate. However, despite the observation that adult rat liver mitochondria oxidize serine to formate, no known enzymatic activities correlate with those of cytoplasmic C1-THF synthase. In embryos, a bifunctional protein, containing 5,10-methylene-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase, accounts for two of these activities. But the 10-formyl-THF synthetase activity has no associated enzyme in mitochondria. Reported here is the discovery of a monofunctional homolog of C1-THF synthase in mammalian mitochondria. Characterization of the protein confirms mitochondrial localization and 10-formyl-THF synthetase activity. Likewise, the adult human transcript is present and differs in size and tissue distribution from cytosolic C1-THF synthase. In mouse embryos, the temporal expression of the mRNA starts out relatively low and increases as the embryos age. The spatial distribution of the transcript is ubiquitous but with areas of elevated expression corresponding to proliferative regions within the embryo. The temporal expression pattern of the protein and transcript correspond well. However, mitochondrial flux studies and immunoblotting data suggest that mitochondrial C1-THF synthase is not the rate-limiting enzyme in mitochondria, at least during the mid to later stages of embryogenesis. Additionally, studies modulating the expression of mitochondria 1-C proteins demonstrate the likelihood that most cytoplasmic 1-C units are mitochondrially derived. / text
42

Mode of action and structure-activity studies of N-alkylthio beta-lactams and N-alkylthio-2-oxazolidinones, and synthesis of second-generation disulfide Inhibitors of beta-Ketoacyl-Acyl Carrer Protein Synthase III (FabH) as potent antibacterial agents

Revell, Kevin David 01 June 2006 (has links)
Work in the Turos group over the past five years has focused on the development of N-alkylthio beta-lactams, which show antibacterial activity against Staphylococcus (including MRSA), Bacillus, and others. These compounds do not function in the manner of the traditional beta-lactam antibiotics, but were thought to undergo an intracellular thiol-transfer to coenzyme A. In expanding the SAR of these novel compounds, it was found that N-alkylthio-2-oxazolidinones also exhibit antibacterial activity. Although CoA acts as the thiol-redox buffer in the genera most susceptible to the N-alkylthio beta-lactams, studies on Coenzyme A disulfide reductase (CoADR) show that the redox buffer is not affected by these compounds. However, the recent finding that fatty acid synthesis is affected by the N-alkylthio beta-lactams led to the discovery that these compounds act as prodrugs, and that the asymmetric CoA disulfides produced by in vivo thiol transfer are potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH) through a novel thiol-disulfide exchange with the active site cysteine. Lactams 2a and 2g were also found to be potent inhibitors of this enzyme. In an effort to produce a CoA mixed-disulfide mimic which could cross the cell membrane, a series of simple aryl-alkyl disulfides were synthesized and tested against E. coli, S. aureus, and B. subtilis. Several of these compounds were found to be very potent antibacterials both in vitro and in vivo, with MICs less than 0.125 micrograms/mL. Comparison of the activities of these disulfides with those of acyl-CoA analogs and CoA mixed disulfides support the assertion that FabH is indeed the cellular target of these potent new compounds.
43

Genetic analyses of adaptive evolution in seed oil composition in the model plant Arabidopsis thaliana : a quantitative genetic approach

Sanyal, Anushree 10 November 2010 (has links)
Natural variation in the relative proportions of saturated and unsaturated fatty acids in seed oils of plants is enormous when considered across a broad taxonomic range of oil seeds. It has been shown that this variation follows a latitudinal cline where the proportions of unsaturated fatty acids increases with increasing latitude as the unsaturated fatty acids in seeds provide energy at a faster rate to germinating seeds at higher latitudes. This variation which follows a latitudinal cline suggests that there may be an adaptive role for this variation. We tested this hypothesis in Arabidopsis thaliana which followed the same trend seen in Helianthus and other angiosperms. In order to understand the underlying genetics of the regulation of the relative proportions of fatty acids and their role in plant evolution, we mapped quantitative trait loci (QTLs) and candidate genes. Here we identified 67 major QTLs responsible for fatty acid synthesis in A. thaliana in Ler-0 x Sha, Ler-0 x Col-4, Ler-2 x Cvi and Ler-0 x No-0 RIL populations. Eight candidate genes were identified based on what is known about seed oil biosynthesis in A. thaliana. Six of the candidate genes collocated to most of the major QTLs. In order to demonstrate that a particular allelic variant is indeed causally related to the phenotype, we investigated DNA polymorphisms in the parental and the RIL line alleles of the collocating candidate genes. Single nucleotide polymorphisms (SNPs) were identified in the collocating candidate genes to study the correlation between the sequence variants and the particular phenotype. We identified 232 SNPs with 77 in the putative regulatory regions upstream of the 5’UTR, 61 in the introns, 18 in the 5’UTR regions, 2 in the 3’UTR regions, and 45 occurring in the exons with 10 non-synonymous substitutions affecting the amino acid residues. We also detected 44 insertions/deletions in the coding, non-coding, 5’UTR, 3’UTR and the regulatory regions. Sequence variation in the fatty acid genes due to SNPs and insertions/deletions should be valuable in tests of association to investigate how the relative proportions of saturated and unsaturated fatty acids are regulated in wild plants and what role they have played in plant evolution and also in breeding oil seed crops that are healthier or have two types of fatty acids in proportions appropriate for different uses. / text
44

Regulation of Lactobacillic Acid Formation in Lactobacillus Plantarum

Smith, Darwin Dennis 12 1900 (has links)
Cyclopropanation of the unsaturated fatty acid moieties of membrane phospholipids is a commonly observed phenomenon in a number of bacterial systems. The cyclopropane fatty acids are usually synthesized during and after the transition from exponential growth to stationary phase, or under such environmental conditions as acidic culture pH, low oxygen tension or high salt concentrations. S-Adenosylmethionine, the ubiquitous methyl group donor, provides the methylene bridge carbon in the reaction catalyzed by cyclopropane fatty acid synthase. Also formed in the reaction is S-adenosylhomocysteine, a potent inhibitor of cyclopropane fatty acid synthase, which is degraded by S-adenosylhomocysteine nucleosidase. This work provides evidence for at least two modes of regulation of lactobacillic acid synthesis, the cyclopropane fatty acid formed from cis-vaccenic acid (cis-11,12-octadecenoic acid), in Lactobacillus piantarum.
45

Synthetic approaches towards heparinoid related saccharides and derivatives

Broberg, Karl Rufus January 2011 (has links)
Heparin glycosaminoglycans mediate a range of biological events, including anticoagulation as well as a diversity of cell proliferation and differentiation processes. Heparin saccharides have been shown to act as inhibitors against angiogenesis and metastasis of tumour cells. This thesis describes work developing chemistry towards varying length oligosaccharide sequences with potential to offer variable sulfation patterns. The main synthetic components to this work were contribution to developing scalable syntheses of an orthogonally protected L-Iduronic acid unit and a differentially protected D-glucosamine unit. The synthetic work also evaluated a recently reported diazo transfer reagent, which allowed for earlier placement of azide protection over that of previously developed routes within the group. This provided a cheaper, more atom efficient route towards protected D-glucosamine building blocks. Glycosylation of the developed D-GlcN donor units with the L-Ido acceptor allowed the production of key disaccharides which facilitated an efficient iterative glycosylation strategy towards longer oligosaccharides, ultimately providing a differentially protected pentasaccharide. The project evaluated methods towards generating various dimeric heparin type systems through forming new O4 ether linkages between GlcN residues across various short linker fragments. The most successful of these dimerisations used a methallyl dichloride core which allowed for further derivatisation towards dihydroxylated species, the analysis of which highlighted some interesting proton NMR data. The final aspect of this project began development of chemistry towards non-reducing end-labelled oligosaccharide sequences by implementation of a masked aldehyde unit on the C4 hydroxyl of GlcN synthesised from the allylated GlcN precursor via dihydroxylation chemistry. Incorporation of this moiety (protected as a 1,2-dibenzyl glycol) within both a trisaccharide and a pentasaccharide was achieved. Further development of this chemistry should allow for late step oxidative cleavage to reveal the reactive aldehyde, potentially allowing for attachment of various amine functionalised fluorophores via reductive amination. Radiolabelling of such a species should also be possible through sodium borotritide reduction for example.
46

<i>ACACB</i> encoding mitochondrial enzyme for carboxylation of acetyl-CoA is a novel disease-causing gene for congenital hyperinsulinemia

Campbell, Teresa, B.S. 16 June 2020 (has links)
No description available.
47

Early Catalytic Steps of Euglena Gracilis Chloroplast Type II Fatty Acid Synthase

Worsham, Lesa M., Williams, Sande G., Ernst-Fonberg, Mary Lou 29 September 1993 (has links)
Euglena gracilis is a very ancient eukaryote whose chloroplast acquisition and evolution has been independent of higher plants. The organism is unique in possessing two de novo fatty acid synthases, a true multienzyme complex of great size in the cytosol and a plastid-localized type II fatty acid synthase composed of discrete enzymes and acyl carrier protein (ACP). The enzymology of the early steps of fatty acid biosynthesis differed in the Euglena type II fatty acid synthase compared to those of Escherichia coli and plants. The enzymes of Euglena participating in both priming and elongation reactions to form a new carbon-carbon bond were acetyl-CoA-ACP transacylase, malonyl-CoA-ACP transacylase, and β-ketoacyl-ACP synthase I. The effects of inhibitors on the three different enzymes were noted. All carbon-carbon bond formation was inhibited by cerulenin. Although neither fatty acid biosynthesis nor any of the isolated enzymes were sensitive to diisopropylphosphofluoridate, the three Euglena enzymes studied were sensitive to different sulfhydryl-alkylating agents. Acetyl-ACP supported fatty acid biosynthesis as effectively as did comparable amounts of ACPSH and acetyl-CoA. There was no evidence for a β-ketoacyl-ACP synthase III for priming such as has been reported in type II fatty acid synthase of higher plants and bacteria. The roles of the acetyl-CoA-ACP transacylase and β-ketoacyl-ACP synthase I appear to be unique in the type II fatty acid synthase of Euglena. Acetyl-CoA-ACP transacylase, malonyl-CoA-ACP transacylase, and β-ketoacyl-ACP synthase I were separated from one another and shown to have different molecular weights.
48

Impaired Hepatic Fatty Acid Synthesis: A Potential Mechanism of the Reduced Growth Phenotype of Cystic Fibrosis Knockout Mice

Bragg, Sarah A. 14 June 2010 (has links)
No description available.
49

Retinoic acid related orphan nuclear receptor a (RORa) regulates diurnal rhythm and fasting induction of sterol 12a-hydroxylase (CYP8B1) in bile acid synthesis

Pathak, Preeti 29 July 2013 (has links)
No description available.
50

Fatty acid synthase inhibitors retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells.

January 2007 (has links)
Ho, Tik Shun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 88-102). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.vii / Table of Contents --- p.viii / List of Table --- p.x / List of Figures --- p.xi / List of Abbreviations --- p.xiii / Chapter CHAPTER 1 --- General Introduction --- p.1 / Chapter 1.1 --- Fatty Acid Synthase (FAS) - 7-domain multifunctional enzyme --- p.1 / Chapter 1.1.1 --- Functions --- p.1 / Chapter 1.1.2 --- Structure --- p.2 / Chapter 1.2 --- Fatty Acid biosynthesis reactions --- p.4 / Chapter 1.3 --- Malonyl Coenzyme A - An important mediator in lipogenesis --- p.7 / Chapter 1.4 --- FAS expression in different histotypes --- p.8 / Chapter 1.4.1 --- FAS in normal cells --- p.8 / Chapter 1.4.2 --- FAS in pathological cells --- p.8 / Chapter 1.4.3 --- Tumor-associated FAS (Oncogenic antigen-519) in cancer cells --- p.9 / Chapter 1.5 --- FAS signaling models in breast and prostate cancers --- p.12 / Chapter 1.5.1 --- Association between FAS and PI3K/Akt pathway --- p.12 / Chapter 1.5.2 --- Hypothetical model of FAS hyperactivity in breast and prostate cancer cells --- p.13 / Chapter 1.6 --- FAS inhibition to tackle cancer cell growth --- p.15 / Chapter 1.6.1 --- FAS inhibitors --- p.15 / Chapter 1.6.1.1 --- Cerulenin --- p.16 / Chapter 1.6.1.2 --- C75 --- p.17 / Chapter 1.6.2 --- Small interfering RNA --- p.17 / Chapter 1.7 --- FAS inhibition to enhance chemoresistant cancer cells sensitivity to drugs --- p.19 / Chapter 1.8 --- Hypothesis --- p.20 / Chapter CHAPTER 2 --- Methods and Materials --- p.21 / Chapter 2.1 --- Chemicals and antibodies --- p.21 / Chapter 2.2 --- Cell cultures --- p.21 / Chapter 2.3 --- MTT assay --- p.22 / Chapter 2.4 --- 5-Bromo-2'-deoxyuridine (BrdU)-labeling cell proliferation assay --- p.22 / Chapter 2.5 --- Cytotoxicity detection assay of LDH release --- p.23 / Chapter 2.6 --- DNA flow cytometry --- p.23 / Chapter 2.7 --- Confocal micocropy --- p.24 / Chapter 2.8 --- Immunoblot analysis --- p.24 / Chapter 2.8.1 --- Preparation of protein lysates --- p.24 / Chapter 2.8.2 --- Immunoblotting --- p.25 / Chapter 2.9 --- Caspase inhibitor studies --- p.26 / Chapter 2.10 --- Analysis of mitochondrial membrane potential --- p.26 / Chapter 2.11 --- Determination of caspase activities --- p.27 / Chapter 2.12 --- siRNA transfection --- p.27 / Chapter 2.13 --- Statistical analysis --- p.28 / Chapter CHAPTER 3 --- Results --- p.29 / Chapter 3.1 --- Cytostatic & cytotoxic studies of FAS inhibitors on human cancer cells --- p.29 / Chapter 3.1.1 --- Cerulenin and C75 suppress cell growth of different cancer histotypes --- p.29 / Chapter 3.1.2 --- Cerulenin and C75 suppress cell growth of A-375 dose- and time-dependently --- p.32 / Chapter 3.1.3 --- Cerulenin and C75 exert cytotoxic effect on A-375 but not normal skin HS68 cells --- p.36 / Chapter 3.1.4 --- Cerulenin and C75 arrest cell cycle progression and induce apoptosis with DNA Fragmentation --- p.39 / Chapter 3.2 --- Mechanistic studies of FAS inhibitors in A-375 cells --- p.46 / Chapter 3.2.1 --- Cerulenin and C75 induce caspase-dependent apoptosis --- p.46 / Chapter 3.2.2 --- Cerulenin- and C75-induced apoptosis involve extrinsic death receptor pathway --- p.52 / Chapter 3.2.3 --- Cerulenin- and C75-induced apoptosis involve intrinsic mitochondrial pathway --- p.57 / Chapter 3.2.4 --- Extrinsic death receptor pathway serves as a pioneer and links with intrinsic mitochondrial pathway in cerulenin- and C75-induced apoptosis --- p.65 / Chapter 3.3 --- Small interfering RNA on Fatty Acid Synthase (FAS siRNA) --- p.68 / Chapter 3.3.1 --- FAS siRNA induces PARP cleavage --- p.68 / Chapter 3.3.2 --- FAS siRNA triggers caspase-dependent apoptosis as FAS inhibitors --- p.70 / Chapter CHAPTER 4 --- Discussion --- p.72 / Chapter CHAPTER 5 --- Future Prospect --- p.85 / Chapter CHAPTER 6 --- References --- p.88

Page generated in 0.0835 seconds