• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 56
  • 38
  • 31
  • Tagged with
  • 238
  • 44
  • 25
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Structural and functional studies of the myrosinase-glucosinolate system in Arabidopsis thaliana and Brassica napus /

Andreasson, Erik. January 2000 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2000. / Includes bibliographical references.
222

Modeling of gene regulative networks in developmental systems

Hohm, Tim January 2009 (has links)
Zugl.: Zürich, Techn. Hochsch., Diss., 2009
223

DNA-Array-Technologie Entwicklung von DNA-Arrays mit 13.000 cDNA-Klonen des Modellorganismus Arabidopsis thaliana und Anwendung in der Genexpressionsanalyse pflanzlicher Pathogenabwehr /

Scheideler, Marcel. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Mainz. / Auch als gedr. Diss.
224

Systematische Untersuchungen von Proteininteraktionen der MYB und bHLH Transkriptionsfaktoren aus Arabidopsis thaliana

Zimmermann, Ilona. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Köln.
225

Funktionelle Analyse von ERF-Transkriptionsfaktoren aus N. tabacum und A. thaliana im Rahmen der Pathogenresistenz

Fischer, Ute. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Göttingen.
226

Untersuchungen zur Schutzfunktion von a-Tocopherol und dpH-abhängiger Energielöschung bei photooxidativem Stress in höheren Pflanzen

Graßes, Thomas Wilfried. Unknown Date (has links)
Universiẗat, Diss., 2005--Düsseldorf.
227

Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\) / Zytosolisches Ca\(^2\)\(^+\), ein zentraler Regulator der vakuolären Ionenleitfähigkeit und der schnellen Auxin-Signaltransduktion in \(Arabidopsis\) \(thaliana\)

Dindas, Julian January 2019 (has links) (PDF)
Das Phytohormon Auxin erfüllt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit äußeren Reizen wie Schwerkraft, Wasser- und Nähstoffverfügbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abhängigen Regulation von Zellteilung und -streckung. Wichtig für letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher für Nährstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuolär gespeicherte Metabolite und Ionen werden sowohl über aktive Transportprozesse, als auch passiv durch Ionenkanäle, über die vakuoläre Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuolärer Transportprozesse. Änderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung über längere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuolärer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuolärer Ionenkanäle und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellulären Mikroelektroden durchgeführt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte bestätigt werden, dass die vakuoläre Membran der limitierende elektrische Wiederstand während intravakuolärer Messungen ist und so gemessene Ionenströme in der Tat nur die Ströme über die vakuoläre Membran repräsentieren. Die bereits bekannte zeitabhängige Abnahme der vakuolären Leitfähigkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erhöhung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuoläre Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuolärer Leitfähigkeit und der zytosolischen Kalziumkonzentration bestätigt werden. Die Vakuole ist jedoch nicht nur ein Empfänger zytosolischer Kalziumsignale. Da die Vakuole den größten intrazellulären Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen bestätigt werden. Änderungen des vakuolären Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. Während depolarisierende Potentiale zu einer Erhöhung der zytosolischen Kalziumkonzentration führten, bewirkte eine Hyperpolarisierung der vakuolären Membran das Gegenteil. Thermodynamische Überlegungen zum passiven und aktiven Kalziumtransport über die vakuoläre Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuolären H+/Ca2+ Austauschern wiederspiegeln, deren Aktivität durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, über den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abhängige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abhängigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekundär aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 für die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unveränderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivität von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterstützung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp führte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterstützten somit eine hypothetische Kalziumabhängige Regulation des polaren Auxin Transports. Ein Model für einen schnellen, Auxin induzierten und kalziumabhängigen Signalweg wird präsentiert und dessen Bedeutung für das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abhängigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso für die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verfügbarkeit von Phosphat diskutiert. / The phytohormone auxin performs important functions in the initiation of plant tissues and organs, as well as in the control of root growth in conjunction with external stimuli such as gravity, water and nutrient availability. These functions are based primarily on the auxin-dependent regulation of cell division and elongation. Important for the latter is the control of the cell turgor by the vacuole. As storage for nutrients, metabolites and toxins, vacuoles are of vital importance. Vacuolar stored metabolites and ions are exchanged across the vacuolar membrane with the cytoplasm via active transport processes as well as passively through ion channels. In their function as second messenger, calcium ions are important regulators but also subject to vacuolar transport processes. Changes in the cytosolic calcium concentration not only act locally, but are also associated with signal transduction over longer distances. In this work, electrophysiological methods were combined with imaging techniques to gain insights into the interaction between cytosolic calcium signals, vacuolar transport processes and auxin physiology in the intact plant organism. Calcium signals are involved in the regulation of vacuolar ion channels and transporters. In order to investigate this in the intact organism, intracellular microelectrode measurements were performed in the model system of bulging Arabidopsis thaliana root hairs. By means of the two-electrode voltage-clamp technique, it could be confirmed that the vacuolar membrane is the limiting electrical resistance during intravacuolar measurements and thus measured ion currents actually represent only the currents across the vacuolar membrane. The already known time-dependent decrease of vacuolar conductivity during intravacuolar experiments could be further correlated with an impalement-related, transient increase of the cytosolic calcium concentration. Intravacuolar voltage-clamp experiments in root hair cells of calcium reporter plants confirmed this relationship between vacuolar conductivity and the cytosolic calcium concentration. However, the vacuole is not just a recipient of cytosolic calcium signals. Since the vacuole represents the largest intracellular calcium reservoir, it has long been argued that it is also involved in the generation of such signals. This could be confirmed in intact root hair cells. Changes in the vacuolar membrane potential affected the cytosolic calcium concentration in these cells. While depolarizing potentials led to an increase of the cytosolic calcium concentration, hyperpolarization of the vacuolar membrane caused the opposite. Thermodynamic considerations of passive and active calcium transport across the vacuolar membrane suggested that the results described herein reflect the behaviour of vacuolar H+/Ca2+ exchangers whose activity is determined by the proton motive force. In addition, cytosolic calcium has been shown to be a key regulator of a rapid auxin-induced signaling pathway that regulates polar transport of the hormone. In the same model system of bulging root hairs it could be shown that the external application of auxin results in a very fast, auxin concentration- and pH-dependent depolarization of the plasma membrane potential. Synchronous with the depolarization of the plasma membrane potential, transient calcium signals were recorded in the cytosol. These were caused by an auxin-activated influx of calcium ions through the ion channel CNGC14. Experiments on loss-of-function mutants as well as pharmacological experiments showed that the auxin-induced activation of the calcium channel requires auxin-perception by the F-box proteins of the TIR1/AFB family. Investigations of auxin-dependent depolarization as well as the auxin-induced influx of protons into epidermal root cells of loss-of-function mutants showed that the secondary active uptake of auxin by the high-affinity transport protein AUX1 is responsible for the rapid depolarization Not only the cytosolic calcium signals correlated with CNGC14 function, but also the AUX1-mediated depolarization of root hairs. An unchanged expression of AUX1 in the cngc14 loss-of-function mutant suggested that the activity of AUX1 must be post-translationally regulated. This hypothesis was supported by experiments in which treatment with the calcium channel blocker lanthanum led to inactivation of AUX1 in the wild type. The cytosolic loading of individual epidermal root cells with auxin resulted in the spread of lateral and acropetal calcium waves. These correlated with a shift of the auxin gradient at the root apex and thus supported a hypothetical calcium-dependent regulation of polar auxin transport. A model for a rapid, auxin-induced and calcium-dependent signaling pathway is presented and its importance for gravitropic root growth is discussed. Since AUX1-mediated depolarization varied with external phosphate concentration, the importance of this rapid signaling pathway is also discussed for the adaptation of root hair growth to an inadequate availability of phosphate.
228

Metabole Regulation von Pollenentwicklung und Pollenkeimung durch Zucker / Metabolic regulation of pollen development and pollen germination by sugars

Hirsche, Jörg January 2008 (has links) (PDF)
Invertasen spielen eine zentrale Rolle im Metabolismus der Pflanzen und werden über eine Vielzahl von Faktoren in ihrer Regulation beeinflusst. Invertasen mit pH-Optimum im sauren Bereich liegen dabei als vakuoläre und zellwandgebundene Isoformen einer Genfamilie in den Pflanzen vor. Im Rahmen dieser Arbeit wurden zum ersten Mal 9 putative Invertasen aus der Nutzpflanze Brassica napus, sowie 4 weitere putative Mitglieder der bereits bekannten Tabakinvertasenfamilie isoliert und Expressionsprofile für die neu klonierten Invertasen erstellt. Symplastisch isolierte Zellen, wie z. B. Pollen und Pollenschläuche, sind auf die Expression zellwandgebundener Invertasen besonders angewiesen, da sie Kohlen-hydrate primär in Form von Fructose und Glucose aufnehmen, die über die Invertasen-vermittelte Spaltung aus Saccharose gebildet werden. An Tabak hatten Goetz et al. (2001) gezeigt, dass eine Inhibierung dieser pollen¬spezi¬fischen Invertaseaktivität zu männlich sterilen Pflanzen führt. Im Rahmen dieser Arbeit wurde nachgewiesen, dass durch Inhibierung der Zellwandinvertase¬aktivität mittels Antisense-Technik oder Expression des proteinogenen Invertase-Inhbitors AtC/VIF2 auch männlich sterile Arabidopsis-Pflanzen generiert werden können. Ein Aktivitätsvergleich der Invertase-promotoren von Nin88 aus Tabak und AtcwINV2 aus Arabidopsis im jeweiligen homo- und heterologen System zeigte jedoch, dass der Einsatz dieser pollenspezifischen Promotoren zur Erzeugung männlich steriler Pflanzen über Familiengrenzen hinweg nicht möglich ist. Neben ihrer Funktion als Energieträger stellen Kohlenhydrate auch Signalmoleküle dar, die in die Regulation zentraler Prozesse der Pflanzen eingreifen. Anhand von Keimungsanalysen mit Arabidopsis-Pollen wurde festgestellt, dass Hexokinase-unabhängige Signalingwege involviert sein müssen, um ein Auskeimen der Pollen zu ermöglichen. Dabei kann die Hexokinase-vermittelte Inhibition der Pollenkeimung vermutlich durch die Beteiligung anderer Signaling-Wege aufgehoben werden. Es wurde außerdem die zuckerabhängige Ausbildung blasenartiger Strukturen an Arabidopsis-Pollen nachgewiesen, die vermutlich durch einen Zucker-spezifischen Abbruch des Pollenschlauchwachstums gebildet werden. / Invertases with acid pH-optimum play a central role in plant metabolism and are regulated by numerous biotic and abiotic factors. They consist of vacuolar and extracellular isoforms of a gene family in plants. For the first time 9 putative members of the invertase family of Brassica napus, as well as 4 additional putative tobacco acid invertases were cloned in this work and expression profiles were analysed. Symplastically isolated cells, like pollen and pollen tubes, in particular depend on the expression of extracellular invertases, since they prefer the uptake of glucose and fructose. These hexoses are generated by the invertase-mediated cleavage of sucrose. Goetz et al. (2001) have shown on tobacco that inhibition of the pollen specific invertase activity lead to male sterile plants. In this work it was shown that inhibition of cell wall invertase activity via antisense technology or expression of the proteinaceous invertase inhbitor AtC/VIF2 also causes male sterility in Arabidopsis thaliana. Comparison of the promoter activities of the invertases Nin88 (tobacco) and AtcwINV2 (Arabidopsis) in the corresponding homo- and heterologous systems revealed that the use of these pollen specific promoters for generating male sterile plants is not possible in diverse plant families. Besides their function as energy source, carbohydrates are signaling molecules that influcence regulation of central processes in the plants. On the basis of germination assays with Arabidopsis pollen, it was shown that hexokinase-independent signaling pathways must be involved to permit normal pollen germination. In this context, hexokinase-mediated inhibition of pollen germination might be overrode by the involvement of other signaling pathways. In addition, the sugar-dependent generation of bubble-like structures at Arabidopsis pollen was demonstrated, which might be caused by the sugar-specific interruption of pollen tube growth.
229

Regulation of pathogen-inducible volatile compounds in Arabidopsis and their role in plant defense

Attaran, Elham January 2010 (has links) (PDF)
Plants are constantly attacked by pathogenic microbes. As a result, they have evolved a plethora of constitutive and inducible defense responses to defend against attempted pathogen infection. Although volatile organic compounds have been implicated in plant defense, direct evidence of their function in plant resistance is still lacking. I have examined the role of VOCs in Arabidopsis defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae pv. maculicola. The obtained results show that the vegetative parts of Arabidopsis produces and emits the volatile phenylpropanoid MeSA and three kinds of terpenoids, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), alpha-ionon and beta-farnesen, upon avirulent and virulent P. syringae inoculation. Whereas the most abundant volatiles, MeSA and TMTT, are already produced at early stages of infection in the compatible and incompatible interaction, enhanced emission of alpha-ionon and beta-farnesen can only be detected in later stages of the compatible interaction. It was revealed that pathogen-induced synthesis of TMTT in Arabidopsis requires the JA signaling pathway but occurs independently of SA defense signaling. Similarly, the production of MeSA is dependent on JA signaling but not on the SA defense signaling pathway. Furthermore, production of MeSA is dependent on the function of ISOCHORISMATE SYNTHASE1, which produces its precursor SA. Upon inoculation with avirulent P. syringae, endogenously produced JA activates the JA signalling pathway to mediate MeSA and TMTT synthesis. By contrast, in the compatible Arabidopsis-Psm interaction, production of MeSA predominantly depends on the P. syringea the virulence factor coronatine, which activates JA downstream signaling. To learn more about the role of inducible VOCs in plant defense responses, I have identified an Arabidopsis T-DNA insertions line with a defect in the TERPENE SYNTHASE4 (TPS4) gene. Emission profiles from this mutant revealed that the induced production of TMTT but not of alpha-ionone, beta-farnesene or MeSA are abolished, demonstrating that TPS4 specifically regulates the P. syringae-induced synthesis of TMTT in Arabidopsis. The lack of TMTT in tps4 mutants, however, does not affect plant defense responses and resistance induction against P. syringae. This excludes a role of the terpenoid as an effective phytoalexin in Arabidopsis leaves against the bacterial pathogen. Moreover, tps4 mutant plants are still able to mount a SAR response, excluding a signaling function of TMTT during SAR. An important aim of our studies was to address the defensive role of MeSA, the major VOC emitted from P. syringae-inoculated Arabidopsis leaves. MeSA has been recently proposed as a critical long distance signal in the development of SAR. I found that two independent T-DNA insertions lines with defects in expression of the pathogen-inducible SA methyl transferase gene BSMT1 are completely devoid of pathogen-induced production of MeSA. However, bsmt1 mutant plants are capable to increase the level of SA in systemic, non-infected leaves of Arabodopsis and develop SAR like wild-type plants upon local P. syringae-inoculation. Thus, MeSA does not function as a critical SAR signal in Arabidopsis. Further experiments showed that SA accumulation in distant leaves occurs due to de novo synthesis through isochorismate synthase. In addition, we also ruled out a critical defensive role of MeSA at inoculation sites, because bsmt1 mutants are able to build up SA-dependent defense responses and local resistance in a wild-type-like manner. The conversion of SA to MeSA and subsequently emission of MeSA from the plant might help the plant to detoxify an excess of SA. This process is regulated by the JA pathway and might be one means to mediate negative crosstalk between JA and SA signaling. Moreover, the COR-triggered conversion of SA to MeSA and emission of the volatile methyl ester could be a way by which virulent P. syringae is able to attenuate the SA-defense pathway. / Pflanzen sind einer ständigen Bedrohung durch phytopathogene Mikroorganismen ausgesetzt und haben deshalb eine Vielzahl von konstitutiven und induzierbaren Abwehrstrategien entwickelt. Die Phytohormone Salicylsäure (SA), Jasmonsäure (JA) und Ethylen sind zum Beispiel entscheidende Regulatoren von induzierten Abwehrmechanismen. Eine Antwort der Pflanze auf mikrobielle Angriffe beinhaltet auch die Emission volatiler organischer Verbindungen (volatile organic compounds - VOCs). Antimikrobielle Wirkungen von VOCs wurden bisher jedoch nur in in-vitro-Assay beobachtet. Ein direkter Beweis für eine mögliche Rolle der VOCs in der Pflanzenabwehr wurde bisher nicht erbracht. Die Rolle pflanzlicher VOCs und deren Bedeutung für die Pathogenabwehr im Modellsystems Arabidopsis thaliana – Pseudomonas syringae ist das zentrale Element dieser Arbeit. Zunächst wurden Terpenoide, die die größte Gruppe der VOCs bilden, untersucht. Vegetative Teile von Arabidopsis emittieren nach Inokulation mit virulenten und avirulenten Stämmen von P. syringae pv. maculicola (Psm) vor allem drei Terpene: das Homoterpen (E,E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraen (TMTT), alpha-Ionon und beta-Farnesen, welches zur Gruppe der Sesquiterpene gehört. Als Hauptkomponente des pathogen-induzierten VOC-Profils wurde das Phenylpropansäurederivat Methylsalicylsäure (MeSA) identifiziert. Um einen besseren Einblick in die Rolle der VOCs in der Pflanzenabwehr zu erhalten, wurden Arabidopsis T-DNA-Insertionslinien des Terpensynthase-gens TPS4 isoliert. Die Emissionsmuster zeigten, dass die induzierbare Freisetzung von TMTT, aber nicht von alpha-Ionon und beta-Farnesen oder MeSA reduziert war. Dies zeigt, dass TPS4 spezifisch die Psm-induzierte TMTT-Synthese in A. thaliana reguliert. Die verringerte Menge TMTT in den tps4-Mutanten hat jedoch keinen Einfluss auf die pflanzlichen Abwehrreaktionen und die Resistenzinduktion gegen P. syringae, was eine Rolle von TMTT als effektives Phytoalexin in A. thaliana gegen bakterielle Pathogene ausschließt. Ebenso hat TMTT keine Signalfunktion bei der Ausbildung der Systemisch erworbenen Resistenz (SAR), da tps4-Mutanten weiterhin in der Lage sind eine SAR-Antwort zu induzieren (Attaran et al. 2008). Als weiteres Teilprojekt wurde die Regulation von pathogen-induzierten VOCs in A. thaliana untersucht. Viele induzierte Abwehrmechanismen beinhalten Signaltransduktionsnetzwerke an denen Salicyl- oder Jasmonsäure beteiligt sind. Mit A. thaliana-Mutanten, die in der SA- oder JA- Synthese oder den jeweiligen Signalwegen beeinträchtigt sind, konnte gezeigt werden, dass die pathogen-induzierte TMTT-Produktion in A. thaliana über den JA-Signalweg, aber unabhängig von Salicylsäure verläuft. Auch die MeSA-Produktion ist JA-abhängig. Für die Biosynthese von SA, genauso wie für deren Derivat MeSA, wird ISOCHORISMAT SYNTHASE1 benötigt, die den MeSA-Vorläufer SA bildet. Im Rahmen einer inkompatiblen Interaktion wird die Bildung von MeSA in Abhängigkeit von der JA-Biosynthese gesteuert. Im Gegensatz dazu ist in der kompatiblen Interaktion die MeSA-Produktion vom bakteriellen Virulenzfaktor Coronatin abhängig. Coronatin-defiziente Stämme von P. syringae sind nicht fähig, eine MeSA-Emission zu induzieren (Attaran et al., 2009). Desweiteren wurde in der vorliegenden Arbeit die Rolle von MeSA in der Pflanzenabwehr untersucht. MeSA ist das VOC, welches von P. syringae-inokulierten A. thaliana-Blättern vorwiegend abgegeben wird. Kürzlich wurde für MeSA eine Signaleigenschaft als Langstreckensignal in der Etablierung der SAR postuliert (Park et al., 2007). Wir konnten zeigen, dass T-DNA Insertionslinien, bei denen keine Expression der pathogeninduzierten SA-Methyltransferase BSMT1 nachgewiesen werden konnte und die somit keine pathogen-induzierte MeSA-Produktion aufwiesen, auch in systemischen, nicht infizierten Blättern nach P. syringae-Inokulation einen erhöhten SA-Spiegel, eine verstärte Expression von Abwehrgenen und eine erhöhte Pathogenresistenz aufwiesen. Diese Mutantenlinien können also die SAR genauso und in demselben Maß wie Wildtyp-Pflanzen entwickeln. Damit konnte gezeigt werden, dass MeSA nicht als zentrales Signal für die Ausbildung der SAR in Arabidopsis wirken kann. Weitere Experimente machten deutlich, dass die SA-Akkumulation in distalen Blättern auf eine de-novo-Synthese durch die Isochorismat-Synthase zurückzuführen ist. Schließlich konnte auch eine wichtige Rolle von MeSA in der Pflanzenabwehr an den Infektionsstellen ausgeschlossen werden, da bsmt1-Mutanten SA-abhängige Abwehrreaktionen und lokale Resistenzantworten in gleicher Weise wie Wildtyp-Pflanzen zeigen (Attaran et al., 2009). Produktion und anschließende Emission von MeSA könnte daher in der Pflanze dazu beitragen, einen toxischen Überschuss an SA abzubauen. Reguliert wird dieser Prozess durch den JA-Signalweg, der dadurch einen negativen Einfluss auf den SAHaushalt der Pflanze innehat. Die Auslösung der MeSA-Produktion von dem bakteriellen Virulenzfaktor COR in der kompatiblen Wechselwirkung könnte eine Strategie von P. syringae sein, die Effizienz der SA-basierenden Abwehr zu verzögern.
230

Elektrophysiologische Untersuchungen zur frühen Erkennungsphase zwischen Pflanzen und Mikroorganismen / Electrophysiological analyses of the early recognition phase between plants and microorganism

Jeworutzki, Elena January 2009 (has links) (PDF)
An der pflanzlichen Plasmamembran geschieht die erste Wahrnehmung von mikrobiellen Molekülen, die MAMPs genannt werden. MAMP/PAMP Rezeptoren leiten frühe Abwehrantworten, wie die Produktion von reaktiven Sauerstoffspezies (ROS), externe Alkalisierung oder Ethylen, ein. Die Arabidopsis FLS2 rezeptorartige Kinase (RLK) stellt einen plasmamembran-lokalisierten MAMP Rezeptor dar, der über die Detektion des Flagellum von Pseudomonas species, eine basale Immunität in Arabidopsis thaliana vermittelt. Flg22, der kürzeste aktive Teil des bakteriellen Flagellins besteht aus 22 Aminosäuren und ist der bestuntersuchte bakterielle Elizitor. In der vorliegenden Arbeit zeigen wir eine starke Beteiligung von Ionenflüssen in der Initiationsphase der basalen Immunität. Unsere Messungen an intakten Arabidopsis Pflanzen und Pflanzengeweben sind in höchstem Masse reproduzierbar und öffnen eine neue Sicht, über die Natur von Ionentransporten in der Pflanzen - Mikroben Interaktion. Als Antwort auf die Applikation von flg22, haben wir nach einer Verzögerungsphase von etwa 2 Minuten eine transiente, dosis-abhängige Depolarisation (EC50=0,2 nM) in Mesophyll- und Wurzelhaarzellen von A. thaliana messen können. Das um 2 Aminsäuren kürzere Peptid flg22 Δ2 oder das Flagellin anderer Bakterien (Agrobacterium or Azospirillum) führten zu keiner Membrandepolarisation. Ebenso konnten keine Membranspannungsänderungen in dem Arabidopsis Ökotypen Ws-0, dem der funktionelle FLS2 Rezeptor fehlt, detektiert werden. Die Komplementation von Ws-0 Pflanzen mit dem intakten FLS2 Rezeptorgen rief eine Resensibilisierung für flg22 hervor. Mit dem EF-Tu Elizitor Peptid aus E.coli, welches durch den Arabidopsis MAMP Rezeptor EFR detektiert wird, wurden ähnliche Ergebnisse erzielt. Auf der Basis von Aequorin wurden Kalzium-induzierte Lumineszenzmessungen durchgeführt, in denen ein transienter Anstieg der zytosolischen Kalziumkonzentration als Antwort auf die Applikation von flg22 gemessen werden konnte. Dosis-Abhängigkeitsmessungen von flg22 und [Ca2+]cyt wiesen zwei unterschiedliche EC50 Werte, von 43 ± 2 pM und 67 ± 42 nM, auf. Möglicherweise wird auf zwei verschiedene Kalziumpools zugegriffen oder es werden zwei verschiedene Kalziumleitfähigkeiten aktiviert. Die Ionenkanalaktivierung und folgende Depolarisation benötigt die aktive Rezeptorkinase. In bak1-4 Arabidopsis Pflanzen, in denen die FLS2 Untereinheit BAK1 – eine weitverbreitete RLK, die auch mit dem Brassinosteroid Rezeptor assoziiert ist – fehlt, konnte keine Depolarisation als Antwort auf flg22 gemessen werden. Arabidopsis Mesophyllzellen zeigten die typische Alkalisierung des Apoplasten als Antwort auf flg22. Nicht-invasive MIFETM Experimente mit Ionen-selektiven Elektroden ergaben, dass der pH-Anstieg durch einen Einstrom von Protonen hervorgerufen wurde. Zusätzlich wurde ein Ausstrom von Chlorid und Kalium aufgezeichnet. Ähnlich wie das Kalziumsignal waren alle detektierten Ionenströme von transienter Natur. Im zweiten Ansatz wurden Membranpotential-Messungen durchgeführt, während in der externen Lösung die Konzentrationen von Protonen, Kalzium, Kalium oder Anionen variiert wurden. Nur eine Änderung des Anionengradienten hatte einen entscheidenden Einfluss auf die flg22-induzierte Depolarisation, was die Wichtigkeit der Anionenkanalaktivierung unterstreicht. Exudat Analysen ergaben, dass Nitrat das bevorzugt transportierte Ion ist. Unter zahlreichen getesteten Ionenkanalblockern erwies sich lediglich Lanthan als effektiver Blocker des flg22-induzierten zytosolichen Kalziumanstiegs, des Protoneneinstroms und der Membrandepolarisation. Da Lanthan bekanntlich unspezifische Kationenkanäle blockt, kann man an diesem Punkt davon ausgehen, dass Kalzium-aktivierte Anionenkanäle die Membrandepolarisation vermitteln und darauf eine Aktivierung von auswärtsgerichteten Kaliumkanälen folgt. Zukünftige Studien mit Doppelläufigen-Mikroelektroden Spannungsklemmexperimenten oder externen ionenselektiven Elektroden an intakten Schliesszellen werden helfen weitere Informationen über die Natur der Ionenkanäle in der basalen Immunität oder generell in der Pflanzen-Mikroben Interaktion zu erhalten. Über die elektrophysiologische Charakterisierung der multiplen Ionenströme in der basalen Immunität hinaus, ist natürlich der nächste wichtige Schritt das oder die Gene zu finden, die für die Ionenkanäle oder Transporter kodieren, die durch nicht nekrotisierende Elizitoren wie flg22 in der basalen Immunantwort in Pflanzen aktiviert werden. / The plant plasma membrane represents the first site for recognition of microbial patterns called MAMPs. MAMP receptors mediate early defense responses including production of reactive oxygen species (ROS), external alkalinisation or ethylene. The Arabidopsis FLS2 receptor-like kinase (RLK) represents a plasma-membrane localized MAMP receptor that provides for innate immunity in Arabidopsis thaliana plants by specifically recognizing the flagellum (flg) of Pseudomonas species. Flg22, the shortest active part of flagellin, composed by 22 aminoacids is the best established bacterial elicitor that. About the role of ion channels in innate immunity nothing was known yet. In the current work we show a strong involvement of ion fluxes in the initiating phase of innate immunity. Our measurements on intact Arabidopsis plants and plant tissues are highly reproducible and open a new view of ion channel functions in plant microbe interactions. In response to the application of flg22, after a delay of about 2 minutes, we recorded a transient, dose-dependent depolarization (EC50=0.2 nM) in mesophyll and root hair cells of A. thaliana. Following wash-out of the peptide elicitor and recovery of the membrane potential to resting potential values within 70 ± 9 min, depolarizations could be elicited several times. No membrane depolarization was evoked upon application of flg22Δ2, a truncated flg22 peptide, or by application of flagellin from other bacteria (Agrobacterium or Azospirillum). Likewise, depolarization was not observed in the natural knockout mutant of the Arabidopsis ecotype Ws-0 lacking the functional FLS2 receptor. Complementation of transgenic Ws-0 plants with the functional FLS2 receptor restored flg22 sensitivity, indicating that FLS2 is essential for flg22 evoked membrane potential changes. Similar results were obtained using the E. coli EF-Tu elicitor peptide elf18, which is recognized by the Arabidopsis MAMP receptor EFR. Aequorin based calcium measurements allowed us to record a transient increase in cytosolic calcium concentration in response to applied flg22. Dose-response studies revealed two distinct EC50 values for the calcium response of 43 ± 2 pM and 67 ± 42 nM respectively. This indicates that two different calcium pools or two different calcium permeabilities in the plasma membrane were activated by flg22. In line with a requirement of receptor-kinase activity for ion channel activation and subsequent depolarization, the latter was completely blocked by the kinase inhibitor K-252a. In bak1-4 Arabidopsis plants, lacking the FLS2 subunit BAK1 – a promiscuous RLK also associated with the brassinosteroid receptor - no depolarisation was measured in response to flg22. This indicated that both RLKs – FLS2 and BAK1 – are required for flagellin induced ion channel activation. Arabidopsis mesophyll cells showed the typical alkalinization of the apoplast in response to flg22. Noninvasive experiments with vibrating ion-selective electrodes revealed that this pH rise was due to an influx of protons. In addition an efflux of chloride and potassium was recorded. All fluxes were transient in nature, as was the observed calcium signal. Simultaneous measurements using two ion-selective electrodes showed a delay of the potassium efflux in comparison to the other ions that participate in the flg22 response. In the second approach, membrane potential measurements were performed while changing extracellular concentrations of protons, calcium, potassium or anions. Changing the anion gradient had the greatest impact on flg22 induced depolarization, suggestive of anion channel activation. Exudates analyses of flg22 treated leaves revealed that nitrate was the favored anion transported. Among many putative channel blocking agents tested, only lanthanum was identified to be potent in blocking the flg22 induced the cytosolic calcium rise, proton influx, and membrane potential depolarization. Since lanthanum represents a non-specific cation channel blocker, we favor to conclude that a calcium dependent activation of anion channels mediated membrane potential depolarization and consequently outward rectifying potassium channels. Future studies with double-barreled microelectrode voltage-clamp or external ion selective electrodes on intact guard cells may help to gain further information about the nature of ion channels in innate immunity or plant microbe interaction in general. Of course, all over the electrophysiological characterization of the multiple ion fluxes in innate immunity the next important step would be to discover the gene(s) coding for ion channels or transporters activated by non necrotic elicitors as flg22 in the innate immune response of plants.

Page generated in 0.0695 seconds