• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 55
  • 38
  • 30
  • Tagged with
  • 236
  • 42
  • 24
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Organspezifische Bildung und Funktion von Oxylipinen in Arabidopsis thaliana / Organ specific synthesis and function of oxylipins in Arabidopsis thaliana

Grebner, Wiebke January 2012 (has links) (PDF)
Oxylipine sind Signalmoleküle, welche durch die enzymatische oder nicht-enzymatische Oxidation von Fettsäuren gebildet werden. Eine bedeutende Gruppe von Oxylipinen in Pflanzen sind die Jasmonate. Dazu zählen Jasmonsäure (JA), deren Vorstufe 12-Oxophytodiensäure (OPDA) sowie deren Metabolite. Ein bedeutender Metabolit von JA ist das Aminosäure-Konjugat JA-Isoleucin (JA-Ile), welches hohe biologische Aktivität besitzt. Besonders für die oberirdischen Organe von Pflanzen wurden bisher vielfältige Funktionen von Jasmonaten beschrieben. Sie sind beteiligt an verschiedenen Entwicklungsprozessen wie der Fertilität von Blüten, aber auch an der Abwehr von Pathogenen und Herbivoren und bei der Reaktion von Pflanzen auf abiotische Stressoren wie hohe Salzkonzentrationen oder Trockenheit. Über die Bildung und Funktion von Oxylipinen in Wurzeln ist bisher jedoch nur wenig bekannt. Aus diesem Grund wurden in der vorliegenden Arbeit die Gehalte von Galaktolipiden und Jasmonaten in Spross und Wurzel von Arabidopsis thaliana Pflanzen verglichen. Mit Hilfe verschiedener JA Biosynthese-Mutanten konnte zudem die Bildung von Jasmonaten in der Wurzel und deren biologische Funktion in diesem Pflanzenorgan untersucht werden. Um die Wurzeln der Arabidopsis Pflanzen einfach behandeln zu können und um schnell und stressfrei größere Mengen von Wurzelmaterial ernten zu können, wurde ein hydroponisches Anzuchtsystem etabliert. Die Analyse von Galaktolipiden zeigte, dass in der Wurzel deutlich geringere Galaktolipid Gehalte als im Spross vorhanden sind. Da Galaktolipide den Hauptbestandteil plastidärer Membranen ausmachen, in den Wurzeln insgesamt jedoch weniger Plastiden vorkommen als in Blättern, wäre dies ein möglicher Grund für den beobachteten Unterschied. Das Vorkommen von mit OPDA oder dnOPDA veresterten Galaktolipiden (Arabidopsiden) wird in der Literatur für die Thylakoidmembranen der Chloroplasten beschrieben. Die Analyse der Arabidopsid Gehalte von Wurzeln konnte diese Aussage stützen, da in Wurzeln, welche normalerweise keine Chloroplasten besitzen, nahezu keine Arabidopside detektiert werden konnten. Die Analyse der Jasmonate zeigte anhand von Pfropfungsexperimenten mit der Jasmonat-freien dde2 Mutante, dass die Wurzeln unabhängig vom Spross in der Lage sind Jasmonate zu bilden, obwohl die Expression vieler JA-Biosynthese-Gene in den Wurzeln sehr gering ist. Zudem zeigten diese Experimente, dass es keinen direkten Transport von Jasmonaten zwischen Spross und Wurzel gibt. Die Bildung von Jasmonaten in der Wurzel konnte durch verschiedene Stresse wie Verwundung, osmotischen Stress oder Trockenheit induziert werden. Kälte und Salzstress hatten hingegen keinen Jasmonat-Anstieg in den Wurzeln zur Folge. Anders als bei osmotischem Stress und Trockenheit, wo sowohl die Gehalte von OPDA als auch von JA und JA-Ile anstiegen, konnte bei Verwundung keine Zunahme der OPDA-Spiegel detektiert werden. Hier kam es zu einer deutlichen Abnahme, wohingegen die JA und JA-Ile Spiegel sehr stark anstiegen. Dies deutet darauf hin, dass es sehr komplexe und vielfältige Regulationsmechanismen hinsichtlich der Bildung von Jasmonaten gibt. Der erste Schritt der JA-Biosynthese, die Bildung von 13-Hydroperoxyfettsäuren (HPOTE), wird durch 13-Lipoxygenase (LOX) Enzyme katalysiert. In Arabidopsis sind vier unterschiedliche 13-LOX Isoformen bekannt. Die Untersuchung verschiedener 13-LOX-Mutanten ergab, dass nur die LOX6 an der Biosynthese von Jasmonaten in der Wurzel beteiligt ist. So konnten in Wurzeln der lox6 Mutante weder basal noch nach verschiedenen Stressen bedeutende Mengen von Jasmonaten gemessen werden. Im Spross dieser Mutante war basal kein OPDA vorhanden, nach Stresseinwirkung wurden jedoch ähnliche Jasmonat Gehalte wie im Wildtyp detektiert. Um Hinweise auf die biologische Funktion von Jasmonaten in Wurzeln zu erhalten, wurden Untersuchungen mit einer lox6 KO Mutante durchgeführt. Dabei zeigte sich, dass abgeschnittene lox6 Wurzeln, welche keine Jasmonate bilden, im Vergleich zum Wildtyp von saprobiont lebenden Kellerasseln (Porcellio scaber) bevorzugt als Futter genutzt werden. Blätter dieser Mutante, welche nach Stress annähernd gleiche Jasmonat Gehalte wie der Wildtyp aufweisen, wurden nicht bevorzugt gefressen. Von der Jasmonat-freien dde2 Mutante wurden hingegen sowohl die Wurzeln als auch die Blätter bevorzugt gefressen. Neben den Experimenten mit Kellerasseln wurden auch Welke-Versuche mit lox6 und dde2 Pflanzen durchgeführt. Hierbei wiesen die lox6 Pflanzen, nicht aber die dde2 Pflanzen, eine erhöhte Suszeptibilität gegenüber Trockenheit auf. dde2 Pflanzen haben im Gegensatz zu LOX Mutanten unveränderte 13-HPOTE Gehalte, aus denen auch andere Oxylipine als Jasmonate gebildet werden können. Dies zeigt, dass durch LOX6 gebildete Oxylipine, im Falle von Trockenheit aber nicht Jasmonate, an der Reaktion von Arabidopsis Pflanzen auf biotische und abiotische Stresse beteiligt sind. / Oxylipins are signaling molecules derived by enzymatic or non-enzymatic oxidation of fatty acids. Jasmonates are one important group of oxylipins in plant. This group includes jasmonic acid (JA), its precursor 12-oxophytodienoic acid, and all JA metabolites. The amino acid conjugate JA-isoleucine (JA-Ile) is one relevant metabolite of JA which shows high biological activity. For the aerial parts of plants, many different functions of jasmonates have been described. Jasmonates are involved in developmental processes like the flower fertility. Furthermore, these compounds function as signals in defense reactions against pathogens and herbivores and in the response to abiotic stress like high salt concentrations or drought. For roots, much less is known about the formation and function of jasmonates. Therefore, in this work the levels of galactolipids and jasmonates in roots of Arabidopsis thaliana in comparison to leaves were analyzed. Using mutants in different steps of jasmonate biosynthesis the formation and biological function of jasmonates in roots were investigated. For easy handling, treatment, and harvest of root material a hydroponic system was established. The analysis of galactolipids showed reduced contents of these compounds in roots in comparison to the shoots. These differences might occur due to the fact that galactolipids are the main compounds of plastid membranes and that roots in general contain less plastids than the leaves. In the literature it is described, that galactolipids esterified with OPDA or dnOPDA (arabidopsides) only occur in the thylakoid membranes of chloroplasts. The analysis of arabidopsid contents in roots supports this statement since nearly no arabidopsides were detectable in roots, which do normally not have chloroplasts. The analysis of jasmonates with different grafting experiments using the jasmonate free dde2 mutant showed that roots were able to synthesize jasmonates independently of the shoot although the expression of several JA biosynthesis genes is very low. These experiments also pointed out that there is no transport of jasmonates between the shoot and the root. Jasmonates accumulated in roots upon different stresses such as wounding, osmotic stress, or drought. Cold and salt stress did not lead to increased jasmonate levels in the roots. Osmotic and drought stress resulted in an increase of all three analyzed jasmonates whereas after wounding only JA and JA-Ile showed higher concentrations. OPDA levels strongly decreased after this type of stress. This suggests the existence of diverse and complex regulatory mechanisms of stress-induced jasmonate synthesis. 13-lipoxygenase (13-LOX) enzymes are involved in the first step of the JA biosynthesis, the formation of 13-hydroperoxy fatty acids (HPOTE), and four 13-LOX isoforms exist in Arabidopsis. Investigation of different 13-LOX mutants revealed that only the LOX6 enzyme is involved in the biosynthesis of jasmonates in roots. In roots of the lox6 mutant no jasmonate levels were detectable, neither basal nor after different stress treatments. In the shoot of this mutant no basal OPDA was measurable. However, after stress treatment nearly the same amounts of jasmonates were detected. To investigate the function of jasmonates in roots a lox6 KO mutant was used. The experiments showed that detached roots of the lox6 mutant which do not produce jasmonates were the preferred food of the detritivorous crustacean Porcellio scaber in comparison to roots of the wild type. Detached leaves of this mutant which show nearly the same amount of jasmonates after stress like the wild type were not eaten faster. However, detached roots and leaves of the jasmonate free dde2 mutant were both preferred in comparison to the wild type. Besides the investigations with P. scaber also drought experiments were carried out. The lox6 mutant but not dde2 was more susceptible to drought. In contrast to LOX mutants, dde2 plants show unaltered levels of 13-HPOTE which can also be converted to other oxylipins than jasmonates. This indicates that LOX6 derived oxylipins are important for the response to biotic and abiotic factors. However, concerning to drought this is not the case for jasmonates.
212

Laser Mikrodissektion als Tool für gewebespezifische Expressionsanalysen in Pflanzen: Methodik und Anwendung / Laser Microdissection as a tool for tissue specific expression analyses in plants: method and application

Larisch, Christina January 2011 (has links) (PDF)
Die Laser Mikrodissektion konnte in der vorliegenden Arbeit als geeignetes Tool für Expressionsanalysen pflanzlicher Gewebe weiterentwickelt werden. Nach einer umfangreichen Optimierung der Technik und Anpassung an die jeweiligen Gegebenheiten der zu analysierenden pflanzlichen Gewebe konnten unterschiedliche physiologische Fragestellungen an verschiedenen Pflanzen bearbeitet werden. Methodische Fortschritte Bei den Arbeiten an infiltrierten Arabidopsis-Pflanzen zeigten sich die methodischen Verbesserungen besonders deutlich: i. Die Zeit der Probengenerierung konnte um 60 80 % reduziert werden, wobei gleichzeitig die Qualität und Quantität der isolierten RNA erheblich verbessert wurden. ii. Dadurch konnte auf die in Deeken et al. (2008) beschriebene Voramplifikation, die stets zum Verlust niedrig exprimierter Gene führt, verzichtet und eine deutlich größere Zahl an im Phloem exprimierten Genen identifiziert werden. iii. Dass dabei 95 % der bei Deeken et al. beschriebenen Phloem-Gene wiedergefunden wurden, zeigt die hohe Reproduzierbarkeit der LMPC-Technik, die durch die Optimierung erreicht werden konnte. Pathogenantwort im Arabidopsis-Phloem iv. Die Laser Mikrodissektion konnte entsprechend i iii eingesetzt werden, um Phloem-Proben von Arabidopsis-Blütenstielen nach Pathogenbefall zu sammeln. v. Bei der Suche nach entsprechenden Phloem-mobilen Signalen, die in systemischen Geweben zur Auslösung der SAR führen, zeigte sich, dass im Phloem der Arabidopsis-Blütenstiele v. a. der Jasmonsäureweg angeschaltet wird. SAR-Marker fanden sich kaum induziert. vi. Im Vergleich der Mikroarray- und qPCR-Ergebnisse wird deutlich, dass mittels LMPC die Vorgänge im Phloem deutlich besser aufgelöst werden können, da die Untersuchungen an kompletten Blütenstielen deutliche Abweichungen gegenüber den Phloem-Arrays aufwiesen. Die Analysen der Mikroarrays sowie die zugehörigen Zeitreihenexperimente sind noch nicht abgeschlossen. Pappel-Holzstrahlen als Schaltstelle der saisonalen Umsteuerung vii. Die Laser Mikrodissektion kann alternativ auch in einem inversen Ansatz angewendet werden. viii. Über auf diese Weise angereicherte Holzstrahlen der Pappel war es möglich, tiefgreifende Einblicke in die Saisonalität der Pappel zu erlangen. ix. Zusammen mit Metabolit- und qPCR-Analysen lieferten diese Ergebnisse einen zeitlichen Ablaufplan der zugrundeliegenden physiologischen Prozesse, insbesondere bei der Umsteuerung von der Dormanz zur Wiederaufnahme des aktiven Wachstums im Frühjahr. / In this dissertation, the Laser Microdissection could be further improved for usage as an adequate tool for expression analyses of plant tissues. Following a large optimization of the technique itself and an adaptation to the conditions of the plant tissues to be analyzed, different physiological questions could be processed using distinct plant species. Methodic improvements Especially while working with infiltrated Arabidopsis plants the methodic improvements were visible: i. The time for sample-generation could be decreased by 60-80 %, at the same time quality and quantity of the isolated RNA could be significantly enhanced. ii. By this the in Deeken et al. (2008) described pre-amplification step, which always leads to loss of low expressed genes, could be omitted, and a considerable higher number of phloem-expressed genes could be identified. iii. Finding 95 % of the in Deeken et al. specified genes in the new list demonstrates the high reproducibility of the LMPC-technique which could be achieved by the optimization. Pathogen response in the Arabidopsis phloem iv. The Laser Microdissection could be used accordingly to i-iii to collect phloem-samples of Arabidopsis inflorescence stalks after a pathogen infection. v. By searching for corresponding phloem-mobile signals that lead to an induction of SAR in systemic tissues it appeared that predominantly the jasmonic acid pathway activated in the phloem of Arabidopsis inflorescence stalks. SAR-marker genes were hardly induced. vi. Comparison of the microarray- and qPCR-data revealed that LMPC shows the processes in the phloem more specific, because analyses of complete inflorescence stalks showed explicit differences to the phloem-microarrays. Analyses of the microarrays as well as the corresponding time course experiments are not yet completed. Poplar wood rays as switch point of seasonal remodeling vii. Alternatively, the Laser Microdissection can be used in an inverted approach. viii. By this approach enriched poplar wood rays allowed deep insight into seasonality of poplar. ix. Together with metabolite- and qPCR-analyses these results provided a timetable of underlying physiological processes, especially during the remodeling from dormancy to resumption of active growth in spring.
213

Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana / Molecular mechanism of the proton-coupled sugar transport in mesophyll vacuoles of Arabidopsis thaliana

Schulz, Alexander January 2012 (has links) (PDF)
Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport über die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierfür wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkräfte des vakuolären Zuckertransportes ermöglichten. Zusätzlich wurden Lokalisations- und Interaktionsstudien zu ausgewählten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgeführt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuoläre glucose- und saccharose-induzierte Protonen-Transportkapazitäten in Mesophyllvakuolen von Wildtyp-pflanzen aufgelöst werden, die eindeutig einen Antiportmechanismus für beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinität und hohe Transportkapazität für den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkräfte der Zuckertransportaktivität herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abhängigen H+-Pumpaktivität auf die pH-Homöostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant für die Zuckertransporter zu fungieren. Darüber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole näher charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich für den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter Überexpression in Zuckertransporter-Verlustmutanten eindeutig aufgelöst und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bezüglich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden. / This work provides new insights into the sugar transport across the vacuolar membrane of Arabidopsis thaliana and its energization by the V-ATPase. For this, patch-clamp experiments were specifically designed enabling low-resolution current recordings for the direct detection and characterization of the transport mechanisms, transport properties and driving forces of the vacuolar sugar transport. In addition, localization and interaction studies on selected transporters have been performed by using the confocal laser scanning microscopy. In particular, following aspects of plant sugar transport and its energization were studied. In patch-clamp experiments on mesophyll vacuoles of wild type plants, prominent glucose- and sucrose-induced proton transport capacities were resolved, which could be clearly related to an antiport mechanism used for loading the vacuole with both sugars. Thereby, the vacuolar glucose and sucrose antiporter showed a low-affinity and a high transport-capacity for the respective sugar. On the molecular level, the proton-coupled uptake of both sugars, glucose and sucrose, into the vacuole could be mainly associated with the putative monosaccharide transporter AtTMT1/2, which was consequently identified as the first glucose-sucrose/proton-antiporter. In the course of these studies, the sugar- and the pH-gradient were revealed as driving forces of the sugar transport activity. In this context, a contribution was made to a quantitative characterization of the V-ATPase that proved the influence of the V-ATPase on the pH homeostasis based on the pH dependency of the H+-pump activity. Hence, the V-ATPase seems to function as a pH-regulated energy source for the sugar transporters. Moreover, a specific physical interaction between AtTMT1 and the mitogen-activated protein kinase AtVIK1 was detected via bimolecular fluorescence complementation assays identifiying AtVIK1 as a potential regulatory factor of AtTMT1. Beside the AtTMT1/2-mediated glucose and sucrose uptake into the vacuole, the sugar release from the vacuole was also characterized. By means of comparative patch-clamp studies on mutants lacking different sugar transporters, AtERDl6 was identified as glucose/proton symporter and appears to be responsible for glucose export from the vacuole. Concerning the export of sucrose out of the vacuole, for the first time direct evidence for the sucrose/proton symport function of AtSUC4 in planta was provided after its transient overexpression in certain sugar-transporter knockout lines. Furthermore, the studies on wild type and sugar-transporter knockout lines regarding vacuolar glucose/sucrose loading and unloading also revealed that in addition to AtTMT1/2 and AtERDl6 further proton-coupled sugar transporters - of yet unknown molecular identity - must be present in mesophyll cells.
214

Funktionelle Charakterisierung zweier Lipid Transfer Proteine in der Arabidopsis thaliana Pathogenantwort / Functional characterization of two lipid transfer proteins involved in Arabidopsis thaliana pathogen defense response

Bieber, Michael January 2013 (has links) (PDF)
Die Multigenfamilie der Lipid Transfer Proteine (LTP) stellt eine Gruppe von kleinen Proteinen dar, welche in allen höheren Landpflanzen vorkommen. In der Modellpflanze Arabidopsis thaliana werden 92 Proteine zur Klasse der LTPs gezählt. Die Benennung der Proteinfamilie basiert auf dem beobachteten in vitro Transfer von Lipiden zwischen zwei Membranen. Alle LTPs weisen ein konserviertes, 8 Cysteine beinhaltendes Motiv und eine hydrophobe Tasche auf, welche für die Bindung hydrophober Moleküle verantwortlich ist. Aufgrund ihrer Signalsequenz werden LTPs über den sekretorischen Weg in den extrazellulären Raum geschleust. Für einige pflanzliche LTPs konnte eine derartige Sekretion bereits nachgewiesen werden. Für andere LTPs wird eine Funktion in der Kutinbildung, der Embryogenese oder der pflanzlichen Immunantwort gegen Phytopathogene postuliert. Letzteres wurde für DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) und AZI1 (AZELAIC ACID INDUCED 1) nachgewiesen, während von LTPIV.4 (At4g55450) nur bekannt ist, dass die Expression spezifisch in Antwort auf Pathogene induziert ist. Aus diesem Grund wurde in der vorliegenden Arbeit die Funktion von LTPIV.4 und AZI1 in Bezug auf die pflanzliche Pathogenantwort in Arabidopsis thaliana untersucht. Anhand von GFP-Fusionsproteinen konnte für LTPIV.4 und AZI1 eine Endoplasmatische Retikulum-Lokalisierung detektiert werden. Auch eine gewebespezifische Promotoraktivität von LTPIV.4 an den Leitgeweben und in jungen sich entwickelnden Blättern konnte identifiziert werden. Diese Erkenntnisse lassen darauf schließen, dass LTPIV.4 möglicherweise an der Signaltransduktion am/im Leitgewebe mitverantwortlich ist. Im Fokus dieser Arbeit stand die spezifische Einordnung von LTPIV.4 in der Ausbildung der lokalen bzw. systemischen Immunantwort von Arabidopsis thaliana. Anhand einer Infektion von Wildtyppflanzen und LTPIV.4 Mutanten mit zwei verschiedenen Pseudomonasstämmen konnte eine LTPIV.4-abhängige Steigerung der pflanzlichen Resistenz gegen die biotrophen Bakterien nachgewiesen werden. In der Resistenz gegen den nekrotrophen Pilz Sclerotinia hingegen zeigte sich keine LTPIV.4 Abhängigkeit. Da die Hormone Salicylsäure (SA) und Jasmonsäure (JA) in der Ausbildung der pflanzlichen Abwehr gegen verschiedene Pathogene wichtig sind, wurden die Hormonlevel von SA und JA in ltpIV.4, 35S::LTPIV.4 sowie in Wildtyppflanzen analysiert. Die untersuchten Phytohormongehalte zeigten eine LTPIV.4 unabhängige, schnelle Akkumulation von SA nach der Infektion mit virulenten (vir) Pseudomonas syringae pv. maculicola (Psm) und eine spätere Erhöhung der JA-Gehalte. Es konnte somit kein regulatorischer Effekt von LTPIV.4 auf die SA- sowie die JA-Gehalte detektiert werden. Die Expression von SAG13 (SENESCENCE-ASSOCIATED GENE 13) und OXI1 (OXIDATIVE SIGNAL-INDUCIBLE 1), welche eine Funktion im programmierten Zelltod (PCD) haben beziehungsweise durch oxidativen Stress induziert werden, war hingegen erhöht in konstitutiv LTPIV.4 exprimierenden Pflanzen, verglichen mit dem Wildtyp von LTPIV.4. Als ein weiterer Ansatzpunkt für die funktionelle Charakterisierung von LTPIV.4 wurde die in vitro Identifizierung möglicher Substrate mittels Lipid-Protein-Interaktionsanalysen, sowie einer unspezifischen Metabolomanalyse herangezogen. Bei den Interaktionsanalysen konnten Phosphatidsäuren (PA), Phosphatidylglycerine (PG), Monogalactosyldiacylglycerole (MGDG) und auch Digalactosyldiacylglycerole (DGDG) als Interaktionspartner von LTPIV.4 identifiziert werden. Die Metabolomanalyse zeigte einen quantitativen Unterschied zwischen Wildtyp/35S::LTPIV.4 und ltpIV.4 bei einigen MGDG, DGDG und PG Spezies. Aus den in dieser Arbeit gewonnen Daten lässt sich somit schließen, dass LTPIV.4 nach Pathogen/Schaden-assoziierte molekulare Muster- (PAMP/ DAMP-) Erkennung, z.B. von Psm, SA-abhängig vermehrt gebildet wird. Da die konstitutive Expression von LTPIV.4 sowohl zu erhöhter OXI1 und SAG13 Expression als auch zu erhöhter Resistenz gegenüber Psm führt, lässt sich ein Modell aufstellen, in dem LTPIV.4 als positiver Regulator des PCD die Pathogenresistenz von Arabidopsis erhöht. Der zugrunde liegende Mechanismus ist unbekannt. Die Bindung von PAs, PGs, MGDGs und DGDGs an LTPIV.4 in vitro könnte darauf hindeuten, dass auch in vivo hydrophobe Moleküle gebunden und möglicherweise transportiert werden und dies ein Teil der Pathogenantwort ist. Es wäre z.B. denkbar, dass eine mögliche Translokation von LTPIV.4 über das ER in das Zytoplasma oder den apoplastischen Raum erfolgt. Dort interagiert LTPIV.4 mit durch ROS gebildeten, oxidierten Lipiden oder DAMPs und löst entweder symplastisch durch eine Interaktion in der Infizierten Zelle oder in intakten Nachbarzellen durch eine weitere Signaltransduktionskaskade den PCD sowie eine erhöhte ROS Bildung aus, oder das LTP interagiert spezifisch mit oxidierten Lipiden oder DAMPs von abgestorbenen Nachbarzellen, und löst eine intrazelluläre Signalkaskade mit Initiierung des PCD sowie erhöhter ROS-Bildung aus. AZI1 wurde als zweites LTP in dieser Arbeit einbezogen. Ausgehend von der Beobachtung, dass die konstitutive Expression von AZI1 die Resistenz gegen das nekrotrophe Pathogene Botrytis cinerea erhöht, sollte in der vorliegenden Arbeit detailiert untersucht werden, ob AZI1 eine Rolle in der Resistenz gegen das nekrotrophe Pathogen Sclerotinia sclerotiorum spielt. Die azi1-1 Mutante zeigte hierbei jedoch eine erhöhte Resistenz gegen den nekrotrophen Pilz Sclerotinia sclerotiorum. Da bisher keine Unterschiede in der Genexpression von spezifischen Markergenen in WT und azi1-1 Pflanzen nach Sklerotiniainfektion festgestellt werden konnte und es auch für LTPs bekannt ist, dass sie eine Rolle in der Kutikulasynthese spielen, wäre eine Hypothese, dass die unterschiedlichen Infektionsphänotypen mit Sclerotinia und Botrytis auf eine strukturelle Veränderung der Kutikulabeschaffenheit zurückzuführen sind. Weiterhin konnte für AZI1 eine mögliche Rolle in der Verwundungsantwort detektiert werden, da sowohl die AZI1 Genexpression, als auch die erhaltenen basal signifikant erhöhten 12-oxo-Phytodiensäure (OPDA)-Gehalte auf eine negativ regulatorische Rolle von AZI1 in der Verwundungs-abhängigen JA-Signaltransduktion hindeuten. / Functional characterization of two lipid transfer proteins involved in Arabidopsis thaliana pathogen defense response
215

Funktion des Lipidtransferproteins 2 (LTP2) und dessen Rolle bei der Bildung von durch Agrobacterium tumefaciens induzierten Wurzelhalsgallen an Arabidopsis thaliana / Function of lipid transfer protein 2 (ltp2) and its function in Agrobacterium tumefaciens induced crown gall development on Arabidopsis thaliana

Saupe, Stefanie January 2014 (has links) (PDF)
In Tumoren an Arabidopsis thaliana, induziert über Agrobacterium tumefaciens (Stamm C58), ist von den 49 bekannten Lipidtransferproteinen (LTPs) nur die Expression von LTP2 stark erhöht (Deeken et al., 2006). Mutanten ohne LTP2-Transkripte (ltp2KO) entwickeln deutlich kleinere Tumore als der Wildtyp. Durch die permanenten Zellstreckungs- und Dehnungsprozesse besitzen Tumore keine intakte Epidermis (Efetova et al., 2007). Dies wiederum führt zum Verlust einer vollständigen Cuticula-Schicht, welche von der Epidermis produziert wird und dieser als Barriere zur Umwelt aufgelagert ist. Um den transpirationsbedingten Wasserverlust zu minimieren, werden in Tumoren langkettige Aliphaten in die äußeren Zellschichten eingelagert (Efetova et al., 2006). Ein ähnliches Szenario findet um Verwundungsareale statt (Kolattukudy et al., 2001). Die Gen-Expression von LTP2 wird nicht durch tumorinduzierende Agrobakterien ausgelöst. Faktoren wie Verwundung, sowie die Applikation des Trockenstress-Phytohormons Abscisinsäure (ABA) begünstigen die LTP2-Gen-Expression positiv. Außerdem ist der LTP2-Promotor in Gewebe aktiv, in welchem sekundäre Zellwandmodifikationen auftreten, sowie insbesondere in Abscissionsschichten von welkenden Organen. Ungerichtete Lipidanalysen der ltp2KO-Mutante im Vergleich zum Wildtyp zeigten nur signifikante Veränderungen in der Menge definierter Sphingolipide – obwohl bislang eine Beteiligung von LTP2 am Transfer von Phospholipiden postuliert wurde. Allerdings kann das LTP2-Protein, wie Protein-Lipid-Overlay-Analysen demonstrierten, weder komplexen Sphingolipide noch Sphingobasen binden. Neben Sphingobasen sind auch langkettige Fettsäuren Bestandteile von Sphingolipiden und diese sind wiederum Bindepartner von LTP2. Um eine eventuelle Beteiligung von LTP2 an der Bildung von Suberin von Tumoren zu zeigen, wurde dieses analysiert. Die GC-MS-Analysen des Tumor-Suberins haben jedoch veranschaulicht, dass durch das Fehlen von LTP2-Transkripten das Lipidmuster nicht beeinträchtigt wird. Eine Überexpression von LTP2 im gesamten Kormophyten war trotz drei unabhängiger experimenteller Ansätze nicht möglich. Daher wurde das Protein ektopisch in epidermalen Zellen exprimiert (CER5Prom::LTP2). Die Transgenen CER5Prom::LTP2 wiesen einige morphologische Besonderheiten auf, wie verminderte Oberflächenhydrophobizität, aberrante Blüten- und Blattmorphologien etc., die typisch für Wachsmutanten sind. GC-MS-Analysen der cuticulären Wachse dieser transgenen Pflanzen zeigten, einen erhöhten Gehalt an C24- und C26-Fettsäuren, wohingegen die korrespondierenden Aliphaten wie Aldehyde und Alkane dezimiert waren. Unterstützend zeigten Lokalisationsanalysen, dass das LTP2-Protein an/in der Plasmamembran assoziiert ist. Somit kann die These aufgestellt werden, dass LTP2 langkettigen, unverzweigten Aliphaten (Fettsäuren) an der Grenzfläche Plasmamembran/Zellwand transferiert, die zur Versieglung und Festigung von Zellwänden benötigt werden. / Out of 49 known lipid transfer protein (LTP) only the expression of LTP2 is highly increased in tumors induced on Arabidopsis thaliana via Agrobacterium tumefaciens (strain C58; Deeken et al., 2006). Mutants with no LTP2 transcripts (ltp2KO) develop significantly smaller tumors than the wild-type. Due to the permanent cell stretch and elongation processes tumors do not possess an intact epidermal layer (Efetova et al., 2007). This leads to the loss of a complete cuticle layer, which is produced by the epidermis and builds up a barrier to the environment. To minimize the transpirational water loss, long-chain aliphatic compounds are incorperated into the outer cell layers of tumors (Deeken et al., 2006). The gene expression of LTP2 is not triggered by tumor-inducing agrobacteria. Instead, factors such as wounding and the application of the phytohormone abscisic acid (ABA) induce the LTP2 gene expression. In addition, the LTP2 promoter is highly active in tissue, in which secondary cell wall modifications occur, and in the abscission zone of wilting organs. Untargeted lipid analyzes of ltp2KO mutant in comparison to the wild type showed significant changes in the amount of defined sphingolipids only - although the involvement of LTP2 has been postulated for the transfer of phospholipids. However, the LTP2 protein, as protein-lipid overlay analysis demonstrated, binds neither complex sphingolipids nor sphingobases. Instead LCFAs, which are part of sphingolipids are binding partners of LTP2. In order to show a possible involvement of LTP2 in the formation of tumor-suberin GC-MS analyzes were performed. These demonstrated that the composition of the lipid-pool is not altered in ltp2KO plants. Overexpression of LTP2 was not possible in spite of three independent experimental approaches. The protein was instead expressed ectopically in epidermal cells (CER5Prom::LTP2). The transgenes CER5Prom::LTP2 showed some morphological abnormities, such as reduced surface hydrophobicity, aberrant flowers and leaf morphologies, which are typical for wax mutants. GC-MS analyzes of the cuticular wax of those transgenic lines revealed an increased amount of C24- and C26- fatty acids. Furthermore LTP2 was localized at the plasma membrane. Thus, this thesis proposes a role of LTP2 in the transfer of long chain, unbranched aliphatics (fatty acids), which are needed to seal up and strengthen cell walls at the interface plasma membrane and cell wall.
216

Functional characterisation of NIC2, a member of the MATE family from Arabidopsis thaliana (L.) Heynh.

Dolniak, Blazej January 2005 (has links)
The multidrug and toxic compounds extrusion (MATE) family includes hundreds of functionally uncharacterised proteins from bacteria and all eukaryotic kingdoms except the animal kingdom, that function as drug/toxin::Na<sup>+</sup> or H<sup>+</sup> antiporters. In <i>Arabidopsis thaliana</i> the MATE family comprises 56 members, one of which is NIC2 (Novel Ion Carrier 2). Using heterologous expression systems including <i>Escherichia coli</i> and <i>Saccharomyces cerevisiae</i>, and the homologous expression system of <i>Arabidopsis thaliana</i>, the functional characterisation of NIC2 was performed. It has been demonstrated that NIC2 confers resistance of <i>E. coli</i> towards the chemically diverse compounds such as tetraethylammonium chloride (TEACl), tetramethylammonium chloride (TMACl) and a toxic analogue of indole-3-acetic acid, 5-fluoro-indole-acetic acid (F-IAA). Therefore, NIC2 may be able to transport a broad range of drug and toxic compounds. In wild-type yeast the expression of NIC2 increased the tolerance towards lithium and sodium, but not towards potassium and calcium. In <i>A. thaliana</i>, the overexpression of NIC2 led to strong phenotypic changes. Under normal growth condtions overexpression caused an extremely bushy phenotype with no apical dominance but an enhanced number of lateral flowering shoots. The amount of rossette leaves and flowers with accompanying siliques were also much higher than in wild-type plants and the senescence occurred earlier in the transgenic plants. In contrast, RNA interference (RNAi) used to silence NIC2 expression, induced early flower stalk development and flowering compared with wild-type plants. In additon, the main flower stalks were not able to grow vertically, but instead had a strong tendency to bend towards the ground. While NIC2 RNAi seedlings produced many lateral roots outgrowing from the primary root and the root-shoot junction, NIC2 overexpression seedlings displayed longer primary roots that were characterised by a 2 to 4 h delay in the gravitropic response. In addition, these lines exhibited an enhanced resistance to exogenously applied auxins, i.e. indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) when compared with the wild-type roots. Based on these results, it is suggested that the NIC2 overexpression and NIC2 RNAi phenotypes were due to decreased or increased levels of auxin, respectively. The Pro<sub>NIC2</sub>:GUS fusion gene revealed that NIC2 is expressed in the stele of the elongation zone, in the lateral root cap, in new lateral root primordia, and in pericycle cells of the root system. In the vascular tissue of rosette leaves and inflorescence stems, the expression was observed in the xylem parenchyma cells, while in siliques it was also in vascular tissue, but as well in the dehiscence and abscission zones. The organ- and tissue-specific expression sites of NIC2 correlate with the sites of auxin action in mature Arabidopsis plants. Further experiments using Pro<sub>NIC2</sub>:GUS indicated that NIC2 is an auxin-inducible gene. Additionally, during the gravitropic response when an endogenous auxin gradient across the root tip forms, the GUS activity pattern of the Pro<sub>NIC2</sub>:GUS fusion gene markedly changed at the upper side of the root tip, while at the lower side stayed unchanged. Finally, at the subcellular level NIC2-GFP fusion protein localised in the peroxisomes of <i>Nicotana tabacum</i> BY2 protoplasts. Considering the experimental results, it is proposed that the hypothetical function of NIC2 is the efflux transport which takes part in the auxin homeostasis in plant tissues probably by removing auxin conjugates from the cytoplasm into peroxisomes. / &quot;Multidrug and Toxic Compounds Extrusion&quot; (MATE) &ndash; Proteine sind Membranproteine, die eine Vielzahl komplexer und giftiger Substanzen transportieren können. Sie sind weit verbreitet und kommen in Bakterien und Höheren Organismen mit Ausnahme des Tierreichs vor. Insgesamt gibt es hunderte von bisher kaum untersuchten Genen dieser Familie, die eine hohe Sequenzhomologie aufweisen. In der Pflanze Arabidopsis thaliana wurden 56 Gene der MATE - Familie zugeordnet. Eines von ihnen, der &quot;Novel Ion Carrier 2&quot; (NIC2) wurde näher charakterisiert. Dafür wurden heterologe Expressionssysteme wie Bakterien (Escherichia coli) und Hefe (Saccharomyces cerevisiae) genutzt und transgene Pflanzen (Arabidopsis thaliana) hergestellt. Es wurde gezeigt, dass NIC2 Bakterien eine Resistenz gegenüber mehreren giftigen Stoffen verlieh. In Hefe erhöhte NIC2 die Salztoleranz gegenüber Lithium und Natrium, aber nicht gegenüber Kalium und Kalzium. Das deutet darauf hin, dass NIC2 diese Stoffe transportieren kann und so zur Entgiftung beziehungsweise erhöhter Stresstoleranz beiträgt. In Pflanzen führte die Überexpression von NIC2 zu dramatischen Änderungen im Wachstum. Die Pflanzen waren buschig ohne zentralen Blütenstand, hatten jedoch eine höhere Anzahl von Blättern und Blüten und längere Wurzeln mit einer im Vergleich zu den Wildtyppflanzen verzögerten gravitropen Antwort. In Gegensatz dazu entwickelten Pflanzen, in denen die Expression von NIC2 gehemmt wurde, früh einen zentralen Blütenstand, der allerdings nicht gerade wuchs, sondern die Tendenz hatte, sich zum Boden zu biegen. Das Wurzelsystem bestand aus einer Hauptwurzel und vielen sekundären Wurzeln und war im Vergleich zu den Wildtyppflanzen besser entwickelt. Vermutlich kann die Wuchsform auf einen veränderten Gehalt des Pflanzenhormons Auxin zurückgeführt werden. Die Expression von NIC2 wird durch Auxin induziert. Experimente, in denen die Aktivität eines Gens mit Hilfe eines Reportergens nachgewiesen wird, zeigten, dass NIC2 in Wurzeln, Blättern, Blütenstielen, Blüten und Schoten aktiv ist. Innerhalb der Zelle ist NIC2 in Peroxisomen lokalisiert. Peroxisomen sind kleine Organellen, die eine Rolle im Hormonstoffwechsel spielen können, wie z.B. im Fall von Auxinen. Die Daten sprechen dafür, dass NIC2 eine Funktion beim Auxintransport und somit bei der Auxin-Homöostase hat.
217

Variabilität aliphatischer Glucosinolate in Arabidopsis thaliana-Ökotypen und deren Einfluss auf die Wirtspflanzeneignung von zwei folivoren Insektenarten

Rohr, Franziska January 2009 (has links)
Zugl.: Berlin, Humboldt-Univ., Diplomarbeit
218

The gametophyte specific ARM repeat protein AtARO1 is required for actin dynamics in Arabidopsis during pollen tube growth and double fertilization

Gebert, Marina January 2008 (has links)
Regensburg, Univ., Diss., 2008
219

Structural and functional studies of the myrosinase-glucosinolate system in Arabidopsis thaliana and Brassica napus /

Andreasson, Erik. January 2000 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2000. / Includes bibliographical references.
220

Modeling of gene regulative networks in developmental systems

Hohm, Tim January 2009 (has links)
Zugl.: Zürich, Techn. Hochsch., Diss., 2009

Page generated in 0.0942 seconds