Spelling suggestions: "subject:"actionpotential"" "subject:"aktionspotential""
51 |
Přenosný monitor EKG / Transportable ECG monitorVepřková, Hana January 2015 (has links)
The first two chapters are devoted to theoretical analysis of issues relating to portable EKG monitor. This chapters are aimed to further acquaint the reader with the issue for subsequent easier of understanding on further steps in the implementation of the device which will be contain in the following chapters. The first chapter is mainly a medical nature. We describe the anatomy and functional properties of the heart. In the next chapter we are deal with detail of electrocardiograph and the conditions for its proper function. Other chapters are devoted to the actual implementation of the facility. We are dealing with the issue of build functional portable EKG monitor. This practical part begins by fourth chapter, which consists block diagram of the device and discusses the required parameters. Next most extensive chapter is devoted to a detailed breakdown of the electrical circuit, including the calculation of the individual components. The last chapter describes the implementation and outcome measurements on test persons.
|
52 |
An integrative and translational assessment of altered atrial electrophysiology, calcium handling and contractility in patients with atrial fibrillationFakuade, Funsho Emmanuel 22 October 2021 (has links)
No description available.
|
53 |
Standing Waves Of Spatially Discrete Fitzhugh-nagumo EquationsSegal, Joseph 01 January 2009 (has links)
We study a system of spatially discrete FitzHugh-Nagumo equations, which are nonlinear differential-difference equations on an infinite one-dimensional lattice. These equations are used as a model of impulse propagation in nerve cells. We employ McKean's caricature of the cubic as our nonlinearity, which allows us to reduce the nonlinear problem into a linear inhomogeneous problem. We find exact solutions for standing waves, which are steady states of the system. We derive formulas for all 1-pulse solutions. We determine the range of parameter values that allow for the existence of standing waves. We use numerical methods to demonstrate the stability of our solutions and to investigate the relationship between the existence of standing waves and propagation failure of traveling waves.
|
54 |
Efficient Bone Conduction Hearing Device with a Novel Piezoelectric Transducer Using Skin as an Electrode / 皮膚を電極とする新たな圧電素子を用いた骨導補聴器の開発Furuta, Ichiro 24 November 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24286号 / 医博第4902号 / 新制||医||1061(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 森本 尚樹, 教授 辻川 明孝, 教授 渡邉 大 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
55 |
Improving decoding in intracortical brain-machine interfacesStetner, Michael E. 11 January 2010 (has links)
No description available.
|
56 |
The role of the perinexus in Long QT Syndrome Type 3Wu, Xiaobo 13 February 2023 (has links)
Gain of function of cardiac voltage-gated sodium channel (Nav1.5) leads to Long QT Syndrome Type 3 (LQT3). LQT3 phenotype can be exacerbated by expanding the perinexus, which is an intercellular nanodomain with high density of Nav1.5 in the intercalated disc. Following this finding, we found that elevating extracellular sodium and widening the perinexus synergistically exacerbated LQT3 phenotype, Importantly, we also found that perinexal expansion increases the susceptibility to cardiac arrest in aged LQT3, which demonstrated that perinexal expansion is an arrhythmogenic risk especially in aged LQT3 patients. Furthermore, we observed that the perinexus narrows with aging and conceals LQT3 phenotype, which suggests that perinexal narrowing may have a cardio-protective role during aging in LQT3. Surprisingly, following the finding of the synergistic effect of extracellular sodium elevation and perinexal widening on LQT3 phenotype in drug-induced LQT3 guinea pig hearts, we found that this synergistic effect was not observed in genetically-modified LQT3 mouse hearts, which is due to high sodium also increasing transient outward potassium current (Ito). In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts which functionally express Ito channels. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose. / Doctor of Philosophy / Long QT Syndrome Type 3 (LQT3) is an inherited heart disease with the phenotype of long QT interval in ECG. It has been found that LQT3 phenotype gets worse when a very tiny space in the heart, termed as the perinexus, is wide due to cardiac edema. Following this finding, we also found that increasing sodium concentration together with wide perinexus can further exacerbate LQT3 phenotype in guinea pig hearts. Furthermore, we found that widening the perinexus in aged LQT3 hearts causes cardiac death but not in adult, which suggests that perinexal widening worsens LQT3 phenotype and even leads to cardiac death in aged hearts. Besides, we found that the perinexus narrows with aging and there is no difference in LQT3 phenotype between adult and aged hearts, which suggests that the narrow perinexus during aging may protect the hearts from cardiac death in LQT3. Surprisingly, we discovered that increasing sodium and widening the perinexus together fails to exacerbate LQT3 phenotype when compared with widening the perinexus alone in LQT3 mouse hearts, which is due to high sodium increasing transient outward potassium current (Ito). Notably, Ito channels are not functionally expressed in guinea pig hearts. In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose.
|
57 |
Multiscale Modeling and Simulation of Human Heart FailureGómez García, Juan Francisco 29 June 2015 (has links)
Tesis por compendio / [EN] Heart failure (HF) constitutes a major public health problem worldwide. Operationally it is defined as a clinical syndrome characterized by the marked and progressive inability of the ventricles to fill and generate adequate cardiac output to meet the demands of cellular metabolism that may have significant variability in its etiology and it is the final common pathway of various cardiac pathologies. Much attention has been paid to the understanding of the arrhythmogenic mechanisms induced by the structural, electrical, and metabolic remodeling of the failing heart. Due to the complexity of the electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes equivocal. Nevertheless, a number of common features of failing hearts have been documented. At the cellular level, prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. At the tissue level, intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors.
In this Thesis a computational model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of the late sodium current (INaL) in order to study the arrhythmogenic processes due to failing phenotype. Experimental data from several sources were used to validate the model. Due to extensive literature in the subject a sensitivity analysis was performed to assess the influence of main ionic currents and parameters upon most related biomarkers. In addition, multiscale simulations were carried out to characterize this pathology (transmural cardiac fibres and tissues).
The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of calcium homeostasis of failing myocytes. Our strand simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration (APD) and repolarization time (RT). Conduction velocity (CV) and the safety factor for conduction (SF) were also reduced by the progressive structural remodeling during heart failure. In our transmural ventricular tissue simulations, no reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the vulnerable window (VW). However, intermediate fibrosis and cellular uncoupling significantly widened the VW.
In conclusion, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In that sense, structural remodeling is a key factor in the genesis of vulnerability to reentry, mainly at intermediates levels of fibrosis and intercellular uncoupling. / [ES] La insuficiencia cardíaca (IC) constituye un importante problema de salud pública en todo el mundo. Operacionalmente se define como un síndrome clínico caracterizado por la incapacidad marcada y progresiva de los ventrículos para llenar y generar gasto cardíaco adecuado para satisfacer las demandas del metabolismo celular, que puede tener una variabilidad significativa en su etiología y es la vía final común de varias patologías cardíacas. Se ha prestado mucha atención a la comprensión de los mecanismos arritmogénicos inducidos por la remodelación estructural, eléctrica, y metabólica del corazón afectado de IC. Debido a la complejidad de los cambios electrofisiológicos que pueden ocurrir durante la IC, la literatura científica es compleja y, a veces equívoca. Sin embargo, se han documentado una serie de características comunes en corazones afectados de IC. A nivel celular, se han establecido como las características distintivas de los miocitos aislados de corazones afectados de IC la prolongación del potencial de acción (PA), que implica la remodelación de los canales iónicos y las alteraciones en la dinámica del calcio. A nivel de los tejidos, el desacoplamiento intercelular y la fibrosis se identifican como los principales factores arritmogénicos.
En esta tesis se propuso un modelo celular computacional para la insuficiencia cardíaca utilizando una versión modificada del modelo de potencial de acción ventricular humano de Grandi y colaboradores que incorpora la formulación de la corriente tardía de sodio (INaL) con el fin de estudiar los procesos arritmogénicas debido al fenotipo de la IC. Los datos experimentales de varias fuentes se utilizaron para validar el modelo. Debido a la extensa literatura en la temática se realizó un análisis de sensibilidad para evaluar la influencia de las principales corrientes iónicas y los parámetros sobre los biomarcadores relacionados. Además, se llevaron a cabo simulaciones multiescala para caracterizar esta patología (en fibras y tejidos transmurales).
El modelo propuesto para la corriente tardía de sodio y la remodelación electrofisiológica de los miocitos de corazones afectados de IC reprodujeron con precisión las observaciones experimentales. Una INaL incrementada parece ser un importante contribuyente al fenotipo electrofisiológico y la desregulación de la homeostasis del calcio de los miocitos afectados de IC. Nuestros resultados de la simulaciones en fibra ilustran cómo la presencia de células M y el remodelado electrofisiológico heterogéneo en el ventrículo humano afectado de IC modulan la dispersión de la duración potencial de acción (DPA) y el tiempo de repolarización (TR). La velocidad de conducción (VC) y el factor de seguridad para la conducción (FS) también se redujeron en la remodelación estructural progresiva durante la insuficiencia cardíaca. En nuestras simulaciones transmurales de tejido ventricular, no se observó reentrada en condiciones normales o en presencia de la remodelación iónica de la IC. Sin embargo, determinadas cantidades de fibrosis y / o desacoplamiento celular eran suficientes para provocar la actividad reentrante. En condiciones donde se había generado la reentrada, el remodelado electrofisiológico de la IC no alteró la anchura de la ventana vulnerable (VV). Sin embargo, niveles intermedios de fibrosis y el desacoplamiento celular ampliaron significativamente la VV.
En conclusión, niveles elevados de fibrosis en corazones afectados de IC, así como la reducción de acoplamiento intercelular, se combinan para aumentar los gradientes electrofisiológicos y reducir la propagación eléctrica. En ese sentido, la remodelación estructural es un factor clave en la génesis de la vulnerabilidad a las reentradas, principalmente en niveles intermedios de fibrosis y desacoplamiento intercelular. El remodelado electrofisiológico promueve la arritmogénesis y puede ser alterado dependi / [CA] La insuficiència cardíaca (IC) constitueix un important problema de salut pública arreu del món. A efectes pràctics, es defineix com una síndrome clínica caracteritzada per la incapacitat marcada i progressiva dels ventricles per omplir i generar el cabal cardíac adequat, per tal de satisfer les demandes del metabolisme cel·lular, el qual pot tenir una variabilitat significativa en la seua etiologia i és la via final comuna de diverses patologies cardíaques. S'ha prestat molta atenció a la comprensió dels mecanismes aritmogènics induïts per la remodelació estructural, elèctrica, i metabòlica del cor afectat d'IC. A causa de la complexitat dels canvis electrofisiològics que poden ocórrer durant la IC, trobem que la literatura científica és complexa i, de vegades, equívoca. No obstant això, s'han documentat una sèrie de característiques comunes en cors afectats d'IC. A nivell cel·lular, com característiques distintives dels miòcits aïllats de cors afectats d'IC, s'han establert la prolongació del potencial d'acció (PA), que implica la remodelació dels canals iònics, i les alteracions en la dinàmica del calci. A nivell dels teixits, el desacoblament intercel·lular i la fibrosi s'identifiquen com els principals factors aritmogènics.
Per tal d'estudiar els processos aritmogènics a causa del fenotip de la IC, es va proposar un model cel·lular computacional d'IC utilitzant una versió modificada del model de potencial d'acció ventricular humà de Grandi i els seus col·laboradors, el qual incorpora la formulació del corrent de sodi tardà (INaL). Amb l'objectiu de validar el model es van utilitzar dades experimentals de diverses fonts. A causa de l'extensa literatura en la temàtica, es va realitzar una anàlisi de sensibilitat per tal d'avaluar la influència de les principals corrents iòniques i els paràmetres sobre els biomarcadors relacionats. A més, es van dur a terme simulacions multiescala per a la caracterització d'aquesta patología (fibres i teixits transmurals).
El model proposat per al corrent de sodi tardà i la remodelació electrofisiològica dels miòcits de cors afectats d'IC van reproduir amb precisió les observacions experimentals. Una INaL incrementada sembla contribuir de manera important al fenotip electrofisiològic i a la desregulació de l'homeòstasi del calci dels miòcits afectats d'IC. Els resultats de les nostres simulacions en fibra indiquen que la presència de cèl·lules M i el remodelat electrofisiològic heterogeni en el ventricle humà afectat d'IC modulen la dispersió de la durada del potencial d'acció (DPA) i el temps de repolarització (TR). La velocitat de conducció (VC) i el factor de seguretat per a la conducció (FS) també es van reduir en la remodelació estructural progressiva durant la IC. A les nostres simulacions transmurals de teixit ventricular, no s'observà cap reentrada ni en condicions normals ni en presència de la remodelació iònica de la IC. No obstant això, amb determinades quantitats de fibrosi i/o desacoblament cel·lular sí que es provocà l'activitat reentrant. I amb les condicions que produïren la reentrada, el remodelat electrofisiològic de la IC no va alterar l'amplada de la finestra vulnerable (FV). Tanmateix, nivells intermedis de fibrosi i el desacoblament cel·lular sí que ampliaren significativament la FV.
En conclusió, nivells elevats de fibrosi en cors afectats d'IC, així com la reducció d'acoblament intercel·lular, es combinen per augmentar els gradients electrofisiològics i reduir la propagació elèctrica. Per tant, la remodelació estructural és un factor clau en la gènesi de la vulnerabilitat a les reentrades, principalment en nivells intermedis de fibrosi i desacoblament intercel·lular. / Gómez García, JF. (2015). Multiscale Modeling and Simulation of Human Heart Failure [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52389 / Compendio
|
58 |
Endocytosis of hERG Is Clathrin-Independent and Involves Arf6Karnik, R., Ludlow, M.J., Abuarab, N., Smith, A.J., Hardy, Matthew E., Elliott, D.J.S., Sivaprasadarao, A. 31 December 2013 (has links)
Yes / The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. / British Heart Foundation (grant number PG/10/68/28528; http://www.bhf.org.uk)
|
59 |
Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequenceWalton, R.D., Benson, A.P., Hardy, Matthew E., White, E., Bernus, O. 10 August 2013 (has links)
Yes / Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of −1.03 ± 0.59 and −0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization.
|
60 |
Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?Hardy, Matthew E., Lawrence, C.L., Standen, N.B., Rodrigo, G.C. January 2006 (has links)
No / Introduction: Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using
these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop
medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to
membrane potential, is insensitive to movement, and does not itself affect AP morphology. Materials and methods: We recorded the AP
from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system,
either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the
whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to
voltage clamp the myocyte. Results: Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage
over the voltage range of an AP, producing a change in ratio of 7.5% per 100mV, is unaffected by cell movement and is identical to the
AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was
significantly longer than in unloaded myocytes recorded with a patch electrode (355.6 ± 13.5 vs. 296.2 ± 16.2ms; p< 0.01). Despite this
effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically
or with a patch electrode (91 ± 46 vs. 81 ± 20 nM). Discussion: These data show that the optical AP recorded ratiometrically using di-8-
ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the
AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less
invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates
higher throughput assays.
|
Page generated in 0.1637 seconds