• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 13
  • 12
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 144
  • 144
  • 21
  • 20
  • 19
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bepridil Blockade of Ca<sup>2+</sup>-Dependent Action Potentials in Vascular Smooth Muscle of Dog Coronary Artery

Harder, David R., Sperelakis, Nick 01 January 1981 (has links)
The effect of the new vasodilatory and antianginal compound, bepridil (CERM-1978), was examined on the electrical activity of the vascular smooth muscle of isolated dog coronary arteries. Tetraethylammonium (10 mm) was used to induce excitability in the muscle in the form of Ca2+-dependent overshooting action potentials, whose inward current is carried almost exclusively by Ca2+ ion through voltage-dependent slow channels. Bepridil (5 × 10-7-1 × 10-5 M) produced a dose-dependent depression of the rate of rise and amplitude of these Ca2+ spikes. Complete blockade of the action potentials occurred at 1 × 10-5 M bepridil. These effects of bepridil were antagonized by elevation of external Ca2+ concentration ([CA]o). The effects of bepridil were substantially reversed by washout after about 30 min. Bepridil (10-5 M) also produced a small but significant (p < 0.05) increase in resting membrane resistance (input resistance increased from a mean of 10.1 to 12.4 mΩ), accompanied by a small but significant (p < 0.05) depolarization of 6 m V (from a mean of -51 to -45 mV). These latter effects are consistent with a diminution of the resting K+ conductance (gK) by bepridil. It is concluded that the vasodilatory and antianginal properties of bepridil may be explained by the action of this drug in depressing and blocking the Ca2+ influx into the cells, presumably by acting directly on the voltage-dependent slow channels in the cell membrane, and thereby lowering [Ca]i and thus the degree of contraction. Bepridil has Ca2+-antagonistic (or Ca2+ entry blocking or slow channel blocking) properties much like verapamil, but it is somewhat less potent than verapamil in this action (i.e., complete blockade occurred at 10-5 M bepridil vs. 2 × 10 -6 M verapamil.).
22

Reversible Nerve Conduction Block Using Low Frequency Alternating Currents

Muzquiz, Maria I. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis describes a novel method to reversibly and safely block nerve conduction using a low frequency alternating current (LFAC) waveform at 1 Hz applied through a bipolar extrafascicular electrode. This work follows up on observations made on excised mammalian peripheral nerves and earthworm nerve cords. An in-situ electrophysiology setup was used to assess the LFAC waveform on propagating action potentials (APs) within the cervical vagus nerve in anaesthetized Sprague-Dawley rats (n = 12). Two sets of bipolar cuff or hook electrodes were applied unilaterally to the cervical vagus nerve, which was crushed rostral to the electrodes to exclude reflex effects on the animal. Pulse stimulation was applied to the rostral electrode, while the LFAC conditioning waveform was applied to the caudal electrode. The efferent volley, if unblocked, elicits acute bradycardia and hypotension. The degree of block of the vagal stimulation induced bradycardia was used as a biomarker. Block was assessed by the ability to reduce the bradycardic drive by monitoring the heart rate (HR) and blood pressure (BP) during LFAC alone, LFAC with vagal stimulation, and vagal stimulation alone. LFAC applied via a hook electrode (n = 7) achieved 86.6 +/- 11% block at current levels 95 +/- 38 uAp (current to peak). When applied via a cuff electrode (n = 5) 85.3 +/- 4.60% block was achieved using current levels of 110+/-65 uAp. Furthermore, LFAC was explored on larger vagal afferent fibers in larger human sized nerve bundles projecting to effects mediated by a reflex. The effectiveness of LFAC was assessed in an in-situ electrophysiological setup on the left cervical vagus in anaesthetized domestic swine (n = 5). Two bipolar cuff electrodes were applied unilaterally to the cervical vagus nerve, which was crushed caudal to the electrodes to eliminate cardiac effects. A tripolar extrafascicular cuff electrode was placed most rostral on the nerve for recording of propagating APs induced by electrical stimulation and blocked via the LFAC waveform. Standard pulse stimulation was applied to the left cervical vagus to induce the Hering-Breuer reflex. If unblocked, the activation of the Hering-Breuer reflex would cause breathing to slow down and potentially cease. Block was quantified by the ability to reduce the effect of the Hering-Breuer reflex by monitoring the breathing rate during LFAC alone, LFAC and vagal stimulation, and vagal stimulation alone. LFAC achieved 87.2 +/- 8.8% (n = 5) block at current levels of 0.8 +/- 0.3 mAp. Compound nerve action potentials (CNAP) were monitored directly. They show changes in nerve activity during LFAC, which manifests itself as the slowing and amplitude reduction of components of the CNAPs. Since the waveform is balanced, all forward reactions are reversed, leading to a blocking method that is similar in nature to DC block without the potential issues of toxic byproduct production. These results suggest that LFAC can achieve a high degree of nerve block in both small and large nerve bundles, resulting in the change in behavior of a biomarker, in-vivo in the mammalian nervous system at low amplitudes of electrical stimulation that are within the water window of the electrode.
23

Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats

Hardy, Matthew E., Pervolaraki, E., Bernus, O., White, E. 2018 February 1923 (has links)
Yes / We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9Hz. Action potential waveforms recorded at 1Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na+-channel blocker (5μM) ranolazine or the intracellular Ca2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller inMCTmyocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
24

ADRENERGIC STIMULATION IN ACUTE HYPERGLYCEMIA: EFFECTS ON CELLULAR AND TISSUE LEVEL MURINE CARDIAC ELECTROPHYSIOLOGY

Thyagarajan, Sridevi 01 January 2018 (has links)
Cardiovascular complications associated with elevated levels of glucose in the blood (Hyperglycemia, HG) is a growing health concern. HG is known to be associated with a variety of cardiovascular morbidities including higher incidence of electrical disturbances. Although effects of chronic HG have been widely investigated, electrophysiological effects of acute hyperglycemia are relatively less known. Further, hyperglycemic effects on adrenergic response is not widely investigated. We used excised ventricular tissues from mice to record trans-membrane potentials during a variety of pacing protocols to investigate cellular/tissue level electrophysiological effects of acute hyperglycemia and adrenergic stimulation (1µM Isoproterenol, a β-adrenergic agonist). A custom program was used to compute action potential durations (APD), maximal rates of depolarization (dv/dtmax), and action potential amplitudes (APA) from the recorded trans-membrane potentials. From these computed measures, electrical restitution and alternans threshold were quantified. Restitution was quantified using the Standard Protocol (SP; basic cycle length BCL= 200ms), Dynamic Protocol (DP; 200-40ms or until blockade) and a novel diastolic interval (DI) control protocol with Sinusoidal Changes in DI. Results from 6 mice show that acute hyperglycemia causes prolongation of the APD. Effects of adrenergic stimulation during acute hyperglycemia were partially blunted compared with non-hyperglycemic state, i.e. hyperglycemia minimized the decrease in APD that was produced by adrenergic stimulation. Similar, but less consistent (across animals) effects were seen in other electrophysiological parameters such as alternans threshold. These results show that acute hyperglycemia may itself alter cellular level electrophysiology of myocytes and importantly, modify adrenergic response. These results suggest that in addition to long term re-modeling that occurs in diabetes, acute changes in glucose levels also affect electrical function and further may contribute to systemically observed changes in diabetes by blunting adrenergic response. Therefore, further investigation into the electrophysiological effects of acute changes in glucose levels are warranted.
25

Control analysis of the action potential and its propagation in the Hodgkin-Huxley model

Du Toit, Francois 12 1900 (has links)
Thesis (MSc (Biochemistry))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The Hodgkin-Huxley model, created in 1952, was one of the first models in computational neuroscience and remains the best studied neuronal model to date. Although many other models have a more detailed system description than the Hodgkin-Huxley model, it nonetheless gives an accurate account of various high-level neuronal behaviours. The fields of computational neuroscience and Systems Biology have developed as separate disciplines for a long time and only fairly recently has the neurosciences started to incorporate methods from Systems Biology. Metabolic Control Analysis (MCA), a Systems Biology tool, has not been used in the neurosciences. This study aims to further bring these two fields together, by testing the feasibility of an MCA approach to analyse the Hodgkin-Huxley model. In MCA it is not the parameters of the system that are perturbed, as in the more traditional sensitivity analysis, but the system processes, allowing the formulation of summation and connectivity theorems. In order to determine if MCA can be performed on the Hodgkin-Huxley model, we identified all the discernable model processes of the neuronal system. We performed MCA and quantified the control of the model processes on various high-level time invariant system observables, e.g. the action potential (AP) peak, firing threshold, propagation speed and firing frequency. From this analysis we identified patterns in process control, e.g. the processes that would cause an increase in sodium current, would also cause the AP threshold to lower (decrease its negative value) and the AP peak, propagation speed and firing frequency to increase. Using experimental inhibitor titrations from literature we calculated the control of the sodium channel on AP characteristics and compared it with control coefficients derived from our model simulation. Additionally, we performed MCA on the model’s time-dependent state variables during an AP. This revealed an intricate linking of the system variables via the membrane potential. We developed a method to quantify the contribution of the individual feedback loops in the system. We could thus calculate the percentage contribution of the sodium, potassium and leak currents leading to the observed global change after a system perturbation. Lastly, we compared ion channel mutations to our model simulations and showed how MCA can be useful in identifying targets to counter the effect of these mutations. In this thesis we extended the framework of MCA to neuronal systems and have successfully applied the analysis framework to quantify the contribution of the system processes to the model behaviour. / AFRIKAANSE OPSOMMINMG: Die Hodgkin-Huxley-model, wat in 1952 ontwikkel is, was een van die eerste modelle in rekenaarmagtige neurowetenskap en is vandag steeds een van die bes-bestudeerde neuronmodelle. Hoewel daar vele modelle bestaan met ’n meer uitvoerige sisteembeskrywing as die Hodgkin-Huxley-model gee dié model nietemin ’n akkurate beskrywing van verskeie hoëvlak-sisteemverskynsels. Die twee velde van sisteembiologie en neurowetenskap het lank as onafhanklike dissiplines ontwikkel en slegs betreklik onlangs het die veld van neurowetenskap begin om metodes van sisteembiologie te benut. ’n Sisteembiologiemetode genaamd metaboliese kontrole-analise (MKA) is tot dusver nog nie in die neurowetenskap gebruik nie. Hierdie studie het gepoog om die twee velde nader aan mekaar te bring deurdat die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxley-model getoets word. In MKA is dit nie die parameters van die sisteem wat geperturbeer word soos in die meer tradisionele sensitiwiteitsanalise nie, maar die sisteemprosesse. Dit laat die formulering van sommasie- en konnektiwiteitsteoremas toe. Om die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxleymodel te toets, is al die onderskeibare modelprosesse van die neurale sisteem geïdentifiseer. Ons het MKA toegepas en die kontrole van die model-prosesse op verskeie hoëvlak, tydsonafhanklike waarneembare sisteemvlak-eienskappe, soos die aksiepotensiaal-kruin, aksiepotensiaal-drempel, voortplantingspoed en aksiepotensiaal-frekwensie, gekwantifiseer. Vanuit hierdie analise kon daar patrone in die proseskontrole geïdentifiseer word, naamlik dat die prosesse wat ’n toename in die natriumstroom veroorsaak, ook sal lei tot ’n afname in die aksiepotensiaal-drempel (die negatiewe waarde verminder) en tot ’n toename in die aksiepotensiaal-kruin, voortplantingspoed en aksiepotensiaalfrekwensie. Deur gebruik te maak van eksperimentele stremmer-titrasies vanuit die literatuur kon die kontrole van die natriumkanaal op die aksiepotensiaaleienskappe bereken en vergelyk word met die kontrole-koëffisiënte vanuit die modelsimulasie. Ons het ook MKA op die model se tydsafhanklike veranderlikes deur die verloop van die aksiepotensiaal uitgevoer. Die analise het getoon dat die sisteemveranderlikes ingewikkeld verbind is via die membraanpotensiaal. Ons het ’n metode ontwikkel om die bydrae van die individuele terugvoerlusse in die sisteem te kwantifiseer. Die persentasie-bydrae van die natrium-, kalium- en lekstrome wat tot die waarneembare globale verandering ná ’n sisteemperturbasie lei, kon dus bepaal word. Laastens het ons ioonkanaalmutasies met ons modelsimulasies vergelyk en getoon hoe MKA nuttig kan wees in die identifisering van teikens om die effek van hierdie mutasies teen te werk. In hierdie tesis het ons die raamwerk van MKA uitgebrei na neurale sisteme en die analise-raamwerk suksesvol toegepas om die bydrae van die sisteemprosesse tot die modelgedrag te kwantifiseer.
26

HYSTERESIS IN REPOLARIZATION OF CARDIAC ACTION POTENTIALS: EFFECTS OF SPATIAL HETEROGENEITY AND SLOW REPOLARIZATION CURRENTS

Jing, Linyuan 01 January 2013 (has links)
Repolarization alternans, i.e. beat-to-beat variation of repolarization of action potential, is proposed as a predictor of life-threatening arrhythmias. Restitution relates repolarization duration with its previous relaxation time, i.e. diatstolic interval (DI), and is considered a dominant mechanism for alternans. Previously, we observed that different repolarization durations at the same DI during decelerating and accelerating pacing, i.e. restitution displays hysteresis, which is a measure of “cardiac memory”. Objective of the current study was to investigate in the pig 1) the mechanism for a previously observed hysteresis type phenomenon, where alternans, once started at higher heart rate, persists even when heart rate decreases below its initiating rate, 2) regional differences in expression of hysteresis, i.e. memory in restitution in the heart, and 3) changes in restitution and memory during manipulation of an important repolarization current, the slow delayed rectifier, IKs. Action potentials were recorded in pig ventricular tissues using microelectrodes. Regional differences were explored in endocardial and epicardial tissues from both ventricles. DIs were explicitly controlled in real time to separate restitution mechanism from non-restitution related effects. Stepwise protocols were used to explore the existence in hysteresis in alternans threshold, where DIs were held constant for each step and progressively decreased and then increased. Quantification of cardiac memory was achieved by sinusoidally changing DI protocols, which were used to investigate memory changes among myocytes from different regions of the heart and during IKs manipulation. Results show that during stepwise protocol, hysteresis in alternans still existed, which indicates that restitution is not the only mechanism underlying the hysteresis. When comparing hysteresis obtained from sinusoidally oscillatory DIs among different regions, results show memory is expressed differently with endocardium expressing the most and epicardium the least memory. This provides important implications about the location where arrhythmia would initiate. Results also show that measures for hysteresis loops obtained by sinusoidal DI protocols decreased (increased) after enhancement (attenuation) of IKs, suggesting decreased (increased) hysteresis, i.e. memory in restitution. This effect needs to be considered during drug development.
27

Ionic basis for variability in repolarisaion and its implications in pathological response

Gemmell, Philip Macdonald January 2014 (has links)
Sudden cardiac death represents one of the leading causes of death worldwide, with the majority of these deaths caused by arrhythmias derived from ischæmic events. However, the mechanisms leading from ischæmia to re-entry, arrhythmia and eventual death are poorly understood. Furthermore, variability in the action potential of cardiac tissue, while important in determining arrhythmic risk, is only recently being addressed in computational modelling, with little known about the causes and mechanisms underlying it, nor regarding its evolution in response to pathological conditions such as ischæmia. This dissertation investigates the causes of variability in the repolarisation of the action potential of the rabbit ventricular myocyte, and the response of this variability to ischæmia. The effect of variability in ion channel conductances is investigated by means of a complete search of the parameter space revealed by simultaneous variation in multiple parameters describing ion channel conductances in computational models of the rabbit ventricular action potential. Rabbit data and models are used in this thesis due to the similarities to human data, both in terms of electrophysiology generally, and the response to ischæmia specifically. The response of two different model frameworks is assessed to determine similarities and differences between model frameworks that are designed to reproduce the same system. Those models producing action potential durations that fall within an experimentally derived range at multiple pacing rates are used to define model populations that thus reproduce experimental variability in repolarisation. These model populations are used to investigate the effects of ischæmic conditions on population variability. Variability is measured not only for action potential duration, but also for other biomarkers commonly implicated in the development of re-entry. The work presented in this dissertation is significant for: (1) presenting a comprehensive study of the effect of simultaneous variation in ion channel conductances, with details regarding the interactions between conductances and how these interactions change depending on the pacing rate; (2) detailed examination of the differences between two models of the same system; (3) production of the largest extant populations reproducing experimentally observed variability in action potential duration; (4) the first time model populations have been used to investigate the effects of ischæmia on variability.
28

Information Processing Analysis in Neural Networks

Zhang, Chenfei 07 June 2018 (has links)
No description available.
29

Caracterização eletrofisiológica em girassol: cinética, rotas de propagação, trocas gasosas e fluorescência da clorofila / Sunflower electrophysiological characterization: kinetic, propagation routes, gas exchange and chlorophyll fluorescence

Capelin, Diogo 09 November 2016 (has links)
Esta tese refere-se a pesquisa cujo o principal objetivo foi estudar os efeitos da sinalização elétrica sobre parâmetros fisiológicos de trocas gasosas e fluorescência da clorofila, bem como caracterizar e identificar rotas de propagação de sinais elétricos desencadeados por estímulos de queima em plantas de girassol. Os resultados obtidos a partir deste estudo demonstram que os sinais elétricos desencadeados por estímulo de queima podem ser classificados como potenciais de variação (PV). Estes sinais apresentaram maior facilidade de propagação no eixo vertical da planta atingindo folhas intactas que provavelmente possuem conexão vascular com a folha de estímulo. Apresentaram maior número de eventos de propagação na direção acrópeta da planta e foram incapazes de propagar-se lateralmente não atingindo folhas opostas à de estímulo. Nas folhas opostas onde não houve propagação de PVs foi registrada a ocorrência de hiperpolarização de membranas característica de potencial sistêmico (PS). Quanto aos efeitos fisiológicos do PV, observou-se que este promoveu redução na assimilação líquida de CO2 (A) que provavelmente está relacionada a inativação da fase não fotoquímica da fotossíntese, uma vez que, esteve acompanhada de queda da dissipação fotoquímica dos fotossistemas (qP) e da taxa de transporte de elétrons (ETR). Embora tenha sido registrada alterações na condutância estomática (gs), na concentração intercelular de CO2 (Ci), elevação da dissipação não fotoquímica (qN) e queda na eficiência quântica efetiva do fotossistema II (&Phi;FSII), estes não foram responsáveis pela queda de A, uma vez que, foram registrados posteriormente a sua redução. / This thesis mainly aimed to study the effects of electrical signaling on physiological parameters of gas exchange and chlorophyll fluorescence, and to characterize and identify route propagation of electrical signals triggered by burning stimuli in sunflower plants. The results from this study demonstrate that the electrical signals triggered by burning stimulus can be classified as variation potentials (VP). These signals showed greater ease of propagation in the vertical axis of the plant, reaching intact leaves that are likely to have vascular connection with the stimulus leaf. They presented greater ease of propagation in acropetal direction of the plant and are unable to spread laterally, not reaching leaves opposed to the stimulus. On opposed leaves, where there was no VPs propagation, it was recorded the occurrence of membrane hyperpolarization of systemic potential (PS). Concerning the physiological effects of PV, it was observed that this promoted a reduction in the liquid CO2 assimilation (A) which is probably related to the inactivation of non-photochemical phase of the photosynthesis, since it was accompanied by the decrease of the photochemical dissipation of the photosystems (qP) and the electron transport rate (ETR). Although changes were recorded in stomatal conductance (gs), CO2 intercellular concentration (Ci), increase of nonphotochemical dissipation (qN) and a decrease in the effective quantum efficiency of the photosystem II (&Phi; FSII) were not responsible for the A fall, since its reduction was subsequently reported.
30

Sinalização elétrica de longa distância pós-irrigação em plantas de girassol sob déficit hídrico / Long-distance electrical signaling after irrigation in sunflower plants under drought

Daneluzzi, Gabriel Silva 09 November 2016 (has links)
Uma propriedade fundamental dos seres vivos é a condução de sinais elétricos através de seus tecidos. Mas esse fato pouco é lembrado quando se trata de organismos vegetais. Outro item fundamental é a geração de sinais que possam transmitir informações entre os tecidos e órgãos para um ajuste fino do metabolismo. Nas plantas esses sinais podem ser de natureza química, hidráulica e elétrica. Nesse último caso são conhecidos potenciais de ação (PA), de variação (PV), de ferimentos (WP) e sistêmicos (SP), cada um com sua particularidade quanto à amplitude, velocidade e rotas de propagação, bem como seu papel no metabolismo. Os sinais elétricos podem afetar a respiração, fotossíntese, absorção de água, ativação de genes e fechamento de folhas de plantas insetívoras. PAs podem se propagar com velocidade relativamente constante e sem decréscimo. Eles seguem a lei do tudo-ou-nada, ou seja, todo estímulo que desencadeia um PA deve atingir um limiar de excitação para desencadear o sinal. Assim que o limiar é atingido o sinal se autoperpetua ao passo que estímulos supra limiares desencadeiam PAs de amplitude constante. A via de propagação do PA é o vaso do floema. O objetivo do presente trabalho foi avaliar a sinalização elétrica em resposta à irrigação em plantas de girassol sob déficit hídrico e caracterizar esse sinal quanto à amplitude, duração, velocidade e direção de propagação. Para tanto 37 plantas foram avaliadas por meio de eletrodos extracelulares. Elas foram monitoras eletrofisiologicamente durante um período em que eram irrigadas e em um período sob déficit hídrico. Desse montante, onze responderam à irrigação pela geração de potenciais de ação (PA), ou seja, 30% delas. Oito delas geraram PAs em direção ao ápice (propagação acrópeta) enquanto duas geraram na direção basípeta. Uma delas gerou nos dois sentidos. O PA foi gerado também pós-irrigação mesmo com a planta não tendo passado por déficit hídrico, porém só aconteceu em uma das onze plantas. Os sinais se propagaram no caule, pecíolo e nervura central das folhas. O potencial de ação é gerado após irrigação em plantas de girassol com maior frequência quando elas passam por período de déficit hídrico e se propagam por toda a planta. Isso evidencia o papel do PA na sinalização de longa distância nos vegetais. / A fundamental property in the leaving beings is the conduction of electrical signals through their tissues. However, this fact is not always remembered when it comes to plant organisms. Another key process is the generation of signals that can transmit information among tissues and organs to a fine-tuning of the metabolism. In plants, these signals can be chemical, hydraulic and electrical. Concerning the last one, action potentials (AP), variation potentials (VP), wound potentials (WP) and system potentials (SP) are known; each one with its particularity regarding amplitude, velocity and propagation routes as well as its role in metabolism. The electrical signals may affect respiration, photosynthesis, water uptake, activation of genes and leaf closure in insectivorous plants. APs can spread with relatively constant speed and no decrement. They follow the all-or-nothing law, in another words, every stimulus that triggers an AP must reach a threshold to trigger the signal. Once the threshold is reached, the signal is self-perpetuating while stimuli above threshold trigger APs with constant amplitude. The propagation path of the AP is the phloem vessel. The aim of this work was to evaluate the electrical signaling in response to irrigation in sunflower plants under water deficit and characterize the AP regarding its amplitude, duration, velocity and propagation direction. Thirty seven plants were analyzed using extracellular electrodes. They were electrophysiologically monitored during a period when irrigated and in a period under drought. Eleven plants generated AP after irrigation, i.e. 30%. Eight of them generated AP that propagated acropetally while two generated in basipetal direction. One generated in both directions. The action potential was also generated in a plant that was not under drought stress, however it just happened in one of the eleven plants. The signals propagated in the stem, petiole and midrib of the leaves. The action potential is generated after irrigation in sunflower plants more frequently when they go through a period of water deficit and propagate throughout the plant. This highlights the role of AP in long-distance signaling in plants.

Page generated in 0.1151 seconds