• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active Sensor Array for UWB Breast-Cancer Screening

Tyagi, Vartika January 2021 (has links)
A microwave imaging system processes scattered electromagnetic fields in the microwave region to create images. It is an alternative or complementary imaging tool that can be used in breast cancer imaging. It employs non-ionising radiation and during measurement, compression of the scanned body part is avoided. These benefits potentially lead to safer and more comfortable examinations. It also has the potential to be both sensitive and specific to detect small tumors, whilst being much lower cost than current methods, such as magnetic resonant imaging, mammography and ultrasound. This thesis reports a multi-layer active antenna array for breast imaging using microwaves from 3 GHz to 8 GHz. The proposed structure resolves the outstanding problem in the design of large active antenna arrays for tissue imaging, namely, the isolation of the antennas from the electronic circuits. A ground plane within the multi-layer design separates the antenna array from the electronics array while providing shielding to the antennas from the back and improved power coupling into the tissue. The possibility of a high-speed vertical connector to provide interconnection between the antenna array and the mixer array is investigated and measurements show that it could be utilized for the frequency range from 3 GHz to 8 GHz. / Thesis / Master of Applied Science (MASc)
2

Explanation of DC/RF Loci for Active Patch Antennas

Ali, N.T., Hussaini, Abubakar S., Abd-Alhameed, Raed, Child, Mark B., Rodriguez, Jonathan, McEwan, Neil J., El-Khazmi, E.A. January 2010 (has links)
Yes / A characteristic loop locus of dc power versus RF output power was observed as the frequency was varied around the optimum point of an operational active antenna. A new technique was introduced into the simulation, plotting the dependence of parameters such as supply current, efficiency or output power on internal impedance as seen by the naked transistor. It is now clear that the loop was formed as a consequence of the interaction of the transistor packaging elements with the patch impedances.
3

Active Antenna Oscillator Array

Lin, Yuanzhi 21 April 2009 (has links)
No description available.
4

Full-Dimension Massive MIMO Technology for Fifth Generation Cellular Networks

Nadeem, Qurrat-Ul-Ain 11 1900 (has links)
Full dimension (FD) multiple-input multiple-output (MIMO) technology has recently attracted substantial research attention in the 3rd Generation Partnership Project (3GPP) as a promising technique for the next-generation of wireless communication networks. FD-MIMO scenarios utilize a planar two-dimensional (2D) active antenna system (AAS) that not only allows a large number of antenna elements to be placed within feasible base station (BS) form factors, but also provides the ability of elevation beamforming. This dissertation presents the elevation beamforming analysis for cellular networks utilizing FD massive MIMO antenna arrays. In particular, two architectures are proposed for the AAS - the uniform linear array (ULA) and the uniform circular array (UCA) of antenna ports, where each port is mapped to a group of vertically arranged antenna elements with a corresponding downtilt weight vector. To support FD-MIMO techniques, this dissertation presents two different 3D ray-tracing channel modeling approaches, the ITU based ‘antenna port approach’ and the 3GPP technical report (TR) 36.873 based ‘antenna element approach’. The spatial correlation functions (SCF)s for both FD-MIMO arrays are characterized based on the antenna port approach. The resulting expressions depend on the underlying angular distributions and antenna patterns through the Fourier series coefficients of the power spectra and are therefore valid for any 3D propagation environment. Simulation results investigate the performance patterns of the two arrays as a function of several channel and array parameters. The SCF for the ULA of antenna ports is then characterized in terms of the downtilt weight vectors, based on the more recent antenna element approach. The derived SCFs are used to form the Rayleigh correlated 3D channel model. All these aspects are put together to provide a mathematical framework for the design of elevation beamforming schemes in single-cell and multi-cell scenarios. Finally, this dissertation proposes to use the double scattering channel to model limited scattering in realistic propagation environments and derives deterministic equivalents of the signal-to-interference-plus-noise ratio (SINR) and ergodic rate with regularized zeroforcing (RZF) precoding. The performance of a massive MIMO system is shown to be limited by the number of scatterers. To this end, this dissertation points out future research directions
5

Electrically Steerable Phased-Arrays for 5G Sub-6 GHzMassive MIMO Active Antenna Units : Re-configurable Feed Networks

Kövamees, Johan January 2020 (has links)
During this project we have designed a new type of antenna that uses an array of antenna elements in order to emit electromagnetic radiation as signals and to be able to control the beam. After an extended time the design yielded a simulation which had the correct characteristics. After printing and constructing a prototype of the antenna it was tested in an anechoic chamber at Uppsala University. The array was divided into two different sub-arrays: the upper and the lower sub-arrays. Each of these consisted in itself of two sides: the long and the short sides. Each side had seven radiating elements, during the tests only one of the two sub-arrays (upper or lower) was running. Both sub-arrays are excited via a rat-race or 90 degree coupler. While the antenna was running it had 14 radiating elements and two phase shifters, two per sub-array and two per side. The idea was for a signal to travel passing the radiating elements and the phase shifter which would steer the induced electromagnetic signal in one direction, a traveling-wave array. This direction could be changed since the phase shifters were configurable in three different states per phase shifter, hence the induced electromagnetic beam was steerable. The beam was also steerable through the feed which was re-configurable, since there were two feeds per sub-array a phase shift could be introduced between the long and the short side. The beam steering range was between -2 degrees and 11 degrees oriented as 0 degrees would be a perpendicular line from the array to the receiving end. The design itself worked which could be stated from the results in the upper part of the array, the test results from the lower part however did not match the simulated results. This is likely due to an error in the construction of the antenna rather than the theory since the upper and lower part of the array was mirrored versions of each other. The phase shifters worked as intended in the bigger picture but were slightly different in the simulations compared to the physical ones, likely due to the same type of error source as regarding the full antenna.
6

Active and Passive Unequally Spaced Reflect-Arrays and Elements of RF Integration Techniques

Kurup, Dhanesh G. January 2003 (has links)
<p>Using an array synthesis tool based on a modified differential evolution algorithm, it is shown that the position-phase synthesis exhibits improved pattern characteristics compared to both the phase only and position only synthesis of uniform amplitude antenna arrays. The design of an unequally spaced planar reflect-array and an active power combining reflect-array are presented. The unit cell of the active reflect-array consists of an amplifying active reflect-antenna designed using a novel dual polarized microstrip-T coupled patch antenna. Two modelling approaches are proposed for the active reflect-antenna and the modelling methods are compared with the experiments.</p><p>A computationally efficient analysis of an H-slot in the ground plane of a microstripline is carried out using a transmission line model. To improve the accuracy in the resonant region of the H-slot and retaining the computational efficiency, an artificial neural network is combined with an efficient spectral domain method. An efficient analysis tool for a silicon micromachined H-slot coupled antenna is developed by combining the transmission line models of the H-slot and an aperture coupled antenna. The experimental results are compared with the theory showing good agreement.</p><p>The analysis and design of a microwave amplifier based on non-resonant slot matching is carried out. It is seen that the designed slot matched amplifier has decreased layout size, improved gain and noise figure characteristics compared to a stub matched amplifier. An efficient method for the analysis of non-resonant slots is compared with other approaches showing good agreement. This points to the fact that non-resonant slot matched circuits can be designed with the same speed and efficiency as we design the traditional stub based matching circuits.</p><p>To address the problem of bandwidth and performance of reflect-arrays we propose a dielectric resonator antenna with slotline stubs. As a preliminary step we design a dielectric resonator antenna with slotline feed and the experimental results are compared with those of a commercial CAD tool. Design and analysis of 3D interconnects based on non-radiative dielectric waveguides is carried out. At millimeterwave, these interconnects are useful for hybrid and multilayer integration techniques.</p>
7

Active and Passive Unequally Spaced Reflect-Arrays and Elements of RF Integration Techniques

Kurup, Dhanesh G. January 2003 (has links)
Using an array synthesis tool based on a modified differential evolution algorithm, it is shown that the position-phase synthesis exhibits improved pattern characteristics compared to both the phase only and position only synthesis of uniform amplitude antenna arrays. The design of an unequally spaced planar reflect-array and an active power combining reflect-array are presented. The unit cell of the active reflect-array consists of an amplifying active reflect-antenna designed using a novel dual polarized microstrip-T coupled patch antenna. Two modelling approaches are proposed for the active reflect-antenna and the modelling methods are compared with the experiments. A computationally efficient analysis of an H-slot in the ground plane of a microstripline is carried out using a transmission line model. To improve the accuracy in the resonant region of the H-slot and retaining the computational efficiency, an artificial neural network is combined with an efficient spectral domain method. An efficient analysis tool for a silicon micromachined H-slot coupled antenna is developed by combining the transmission line models of the H-slot and an aperture coupled antenna. The experimental results are compared with the theory showing good agreement. The analysis and design of a microwave amplifier based on non-resonant slot matching is carried out. It is seen that the designed slot matched amplifier has decreased layout size, improved gain and noise figure characteristics compared to a stub matched amplifier. An efficient method for the analysis of non-resonant slots is compared with other approaches showing good agreement. This points to the fact that non-resonant slot matched circuits can be designed with the same speed and efficiency as we design the traditional stub based matching circuits. To address the problem of bandwidth and performance of reflect-arrays we propose a dielectric resonator antenna with slotline stubs. As a preliminary step we design a dielectric resonator antenna with slotline feed and the experimental results are compared with those of a commercial CAD tool. Design and analysis of 3D interconnects based on non-radiative dielectric waveguides is carried out. At millimeterwave, these interconnects are useful for hybrid and multilayer integration techniques.
8

Dvoupásmová anténa pro Globální navigační satelitní systém / Dualband Antenna for Global Navigation Satellite System

Mikulášek, Tomáš January 2009 (has links)
This master’s thesis introduces to the reader with a modern antenna type the microstrip patch antennas. The most common types of microstrip antennas and their parameters and feeding methods are introduced in the theoretical section of this master’s thesis. This section deals with the circularly polarized microstrip antennas. Design of an active dual-band circularly polarized antenna for global navigation satellite application in the AWR Microwave Office is presented in the practical section. The proposed single-fed dual-band circularly polarized design is achieved using two stacked square microstrip patches. The antenna operates at the L1 + E1 and L5 + E5a frequency bands. Antenna preamplifier consists of a low-noise transistor and a dual-band band-pass filter. The thesis describes realization and measurement results of the dual-band antenna performance in the anechoic chamber. Measured results of the preamplifier performance are presented.
9

Contribution à la conception d'antennes MF, HF et VHF miniatures pour des applications mobiles, terrestres et maritimes / Contribution to miniaturized MF, HF and VHF antennas for mobile, terrestrial and maritime applications

Kaverine, Evgueni 05 October 2017 (has links)
Les objectifs de ce travail concernent l'étude, la conception et la caractérisation d'antennes miniatures actives ou passives, large bande ou bande étroite fonctionnant en bandes MF, HF et VHF. Le manuscrit est divisé en cinq parties : La première partie présente un système de caractérisation d'antennes qui a été développé, validé et utilisé pour tous les aériens conçus. Ce système, basé sur une cellule à plaque parallèles (PPC), permet un large spectre de mesures telles que la mesure du gain, du point de compression, de l'intermodulation et de la sensibilité via une méthode rayonnée, particulièrement intéressante dans le cas des antennes actives intégrées. La deuxième partie concerne les antennes solénoïdales sur ferrite. L'utilisation de simulateurs électromagnétiques 3D a permis d'obtenir des résultats qui sont comparés à la théorie proposée dans la littérature. Les principaux systèmes d'adaptation d'impédance sont également étudiés. La troisième partie met en avant la possibilité de concevoir des antennes à substrat ferromagnétique de géométrie non conventionnelle en utilisant des matériaux composites. Deux antennes miniatures fabriquées et fonctionnant en bande VHF permettent d'illustrer ce point. Dans la quatrième partie, nous présentons un concept d'antennes à substrat ferromagnétique partiellement saturé. L'utilisation d'une source de champ magnétique statique associée à un matériau initialement dispersif permet de constater un certain nombre de phénomènes intéressants, tels que l'amélioration de l'efficacité tout en préservant l'adaptation de l'antenne ou bien la création de directivité sur des antennes électriquement très compactes. La dernière partie présente la valorisation du travail à travers un projet de télécommunication hertzienne longue portée s'inscrivant dans le cadre de la navigation maritime. / The objectives of this work concern the study, the design and the measurement of miniaturized passive and active, broadband and narrowband antennas for MF, HF and VHF frequency bands. The thesis is divided into five parts : The first part deals with a measurement system, which has been developed, validated and used for all conceived aerials. The system is based on a parallel plate cell (PPC) and allows an evaluation of the gain, the compression point, the interception point and the sensitivity using a radiative method particularly useful in the case of active integrated antennas. The second part concerns solenoidal ferrite antennas. The results obtained from electromagnetic 3D simulators were compared to the state of the art theory. Main matching technics have also been studied. The third part put the light on the possibility of development of arbitrary shaped antennas on a ferromagnetic substrate using a composite material. Two antennas developed for the VHF band, confirm this point. In the fourth part, we present a concept of antennas on a partially saturated ferromagnetic substrate. A static magnetic field associated with an initially lossy material brings up some interesting phenomena such as an increased efficiency without a degradation of the impedance matching or the directivity with very small antennas. The last part presents an application of the work across a project dedicated to long distance telecommunications in marine navigation.
10

Optimisation of Active Microstrip Patch Antennas

Jacmenovic, Dennis, dennis_jacman@yahoo.com.au January 2004 (has links)
This thesis presents a study of impedance optimisation of active microstrip patch antennas to multiple frequency points. A single layered aperture coupled microstrip patch antenna has been optimised to match the source reflection coefficient of a transistor in designing an active antenna. The active aperture coupled microstrip patch antenna was optimised to satisfy Global Positioning System (GPS) frequency specifications. A rudimentary aperture coupled microstrip patch antenna consists of a rectangular antenna element etched on the top surface of two dielectric substrates. The substrates are separated by a ground plane and a microstrip feed is etched on the bottom surface. A rectangular aperture in the ground plane provides coupling between the feed and the antenna element. This type of antenna, which conveniently isolates any circuit at the feed from the antenna element, is suitable for integrated circuit design and is simple to fabricate. An active antenna design directly couples an antenna to an active device, therefore saving real estate and power. This thesis focuses on designing an aperture coupled patch antenna directly coupled to a low noise amplifier as part of the front end of a GPS receiver. In this work an in-house software package, dubbed ACP by its creator Dr Rod Waterhouse, for calculating aperture coupled microstrip patch antenna performance parameters was linked to HP-EEsof, a microwave computer aided design and simulation package by Hewlett-Packard. An ANSI C module in HP-EEsof was written to bind the two packages. This process affords the client the benefit of powerful analysis tools offered in HP-EEsof and the fast analysis of ACP for seamless system design. Moreover, the optimisation algorithms in HP-EEsof were employed to investigate which algorithms are best suited for optimising patch antennas. The active antenna design presented in this study evades an input matching network, which is accomplished by designing the antenna to represent the desired source termination of a transistor. It has been demonstrated that a dual-band microstrip patch antenna can be successfully designed to match the source reflection coefficient, avoiding the need to insert a matching network. Maximum power transfer in electrical circuits is accomplished by matching the impedance between entities, which is generally acheived with the use of a matching network. Passive matching networks employed in amplifier design generally consist of discrete components up to the low GHz frequency range or distributed elements at greater frequencies. The source termination for a low noise amplifier will greatly influence its noise, gain and linearity which is controlled by designing a suitable input matching network. Ten diverse search methods offered in HP-EEsof were used to optimise an active aperture coupled microstrip patch antenna. This study has shown that the algorithms based on the randomised search techniques and the Genetic algorithm provide the most robust performance. The optimisation results were used to design an active dual-band antenna.

Page generated in 0.1361 seconds