• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A knowledge based computer vision system for skeletal age assessment of children

Mahmoodi, Sasan January 1998 (has links)
No description available.
2

Automated Pose Correction for Face Recognition

Godzich, Elliot J. 01 January 2012 (has links)
This paper describes my participation in a MITRE Corporation sponsored computer science clinic project at Harvey Mudd College as my senior project. The goal of the project was to implement a landmark-based pose correction system as a component in a larger, existing face recognition system. The main contribution I made to the project was the implementation of the Active Shape Models (ASM) algorithm; the inner workings of ASM are explained as well as how the pose correction system makes use of it. Included is the most recent draft (as of this writing) of the final report that my teammates and I produced highlighting the year's accomplishments. Even though there are few quantitative results to show because the clinic program is ongoing, our qualitative results are quite promising.
3

Reconhecimento de padrões com tratamento de incertezas na localização de marcadores e modelos ativos de formas

Behaine, Carlos Alberto Ramirez January 2013 (has links)
As imagens são sinais que possuem muita informação. Os objetos representados em ima- gens podem sofrer deformações fazendo com que suas características mudem, o que difi- culta o reconhecimento do objeto. A chave para o sucesso de um sistema de reconheci- mento de padrões em imagens é escolher adequadamente a sua abordagem e um modelo para as feições presentes nas imagens. Uma das dificuldades é extrair e selecionar as feições que são mais discriminantes entre as diferentes classes usadas para modelar um objeto. Os modelos ativos de formas (Active Shape Models ASM) adaptam-se às defor- mações de um objeto. O objeto a ser modelado, pode ser representado com um modelo de pontos distribuídos (Point Distribution Models PDM). O PDM consiste de pontos de interesse ou marcadores, que permitem a extração de feições em localizações específicas do objeto. Após tratar a incerteza da localização e oclusão dos marcadores é possível ex- trair as feições mais representativas, obtendo-se um desempenho alto em termos da taxa de reconhecimento. Nesta tese são introduzidas novas formas para extrair e selecionar feições com modelos ativos de formas, que melhoram a taxa de classificação onde há objetos deformáveis. Esta tese é inovadora no sentido de aperfeiçoar o uso de ASMs na classificação de faces humanas, e na sua aplicação no monitoramento visual de outros tipos de objetos deformáveis. / Images are signals that have a lot of information. The objects depicted in images may suf- fer deformations causing changes in their characteristics, which hinders the recognition of the object. The key to the success of a system of pattern recognition in images is to choose properly your approach and a model for the features in the images. One difficulty is to extract and select the features that are most discriminating between different classes used to model an object. The Active Shape Models (ASM) adapt to deformations of an object. The object to be modeled can be represented with a Points Distribution Model (PDM). The PDM consists of points of interest or landmarks that allow the extraction of features in specific locations of the object. After treating the uncertainty of the location and occlu- sion of the landmarks it is possible to extract the most representative features, obtaining a high performance in terms of recognition rate. This thesis introduces new ways to extract and select features with ASMs, which improve the classification rate where deformable objects are present. This thesis is innovative in the sense that improves the use of ASMs in the classification of human faces, and that can be applied in visual monitoring of other types of deformable objects.
4

Reconhecimento de padrões com tratamento de incertezas na localização de marcadores e modelos ativos de formas

Behaine, Carlos Alberto Ramirez January 2013 (has links)
As imagens são sinais que possuem muita informação. Os objetos representados em ima- gens podem sofrer deformações fazendo com que suas características mudem, o que difi- culta o reconhecimento do objeto. A chave para o sucesso de um sistema de reconheci- mento de padrões em imagens é escolher adequadamente a sua abordagem e um modelo para as feições presentes nas imagens. Uma das dificuldades é extrair e selecionar as feições que são mais discriminantes entre as diferentes classes usadas para modelar um objeto. Os modelos ativos de formas (Active Shape Models ASM) adaptam-se às defor- mações de um objeto. O objeto a ser modelado, pode ser representado com um modelo de pontos distribuídos (Point Distribution Models PDM). O PDM consiste de pontos de interesse ou marcadores, que permitem a extração de feições em localizações específicas do objeto. Após tratar a incerteza da localização e oclusão dos marcadores é possível ex- trair as feições mais representativas, obtendo-se um desempenho alto em termos da taxa de reconhecimento. Nesta tese são introduzidas novas formas para extrair e selecionar feições com modelos ativos de formas, que melhoram a taxa de classificação onde há objetos deformáveis. Esta tese é inovadora no sentido de aperfeiçoar o uso de ASMs na classificação de faces humanas, e na sua aplicação no monitoramento visual de outros tipos de objetos deformáveis. / Images are signals that have a lot of information. The objects depicted in images may suf- fer deformations causing changes in their characteristics, which hinders the recognition of the object. The key to the success of a system of pattern recognition in images is to choose properly your approach and a model for the features in the images. One difficulty is to extract and select the features that are most discriminating between different classes used to model an object. The Active Shape Models (ASM) adapt to deformations of an object. The object to be modeled can be represented with a Points Distribution Model (PDM). The PDM consists of points of interest or landmarks that allow the extraction of features in specific locations of the object. After treating the uncertainty of the location and occlu- sion of the landmarks it is possible to extract the most representative features, obtaining a high performance in terms of recognition rate. This thesis introduces new ways to extract and select features with ASMs, which improve the classification rate where deformable objects are present. This thesis is innovative in the sense that improves the use of ASMs in the classification of human faces, and that can be applied in visual monitoring of other types of deformable objects.
5

Reconhecimento de padrões com tratamento de incertezas na localização de marcadores e modelos ativos de formas

Behaine, Carlos Alberto Ramirez January 2013 (has links)
As imagens são sinais que possuem muita informação. Os objetos representados em ima- gens podem sofrer deformações fazendo com que suas características mudem, o que difi- culta o reconhecimento do objeto. A chave para o sucesso de um sistema de reconheci- mento de padrões em imagens é escolher adequadamente a sua abordagem e um modelo para as feições presentes nas imagens. Uma das dificuldades é extrair e selecionar as feições que são mais discriminantes entre as diferentes classes usadas para modelar um objeto. Os modelos ativos de formas (Active Shape Models ASM) adaptam-se às defor- mações de um objeto. O objeto a ser modelado, pode ser representado com um modelo de pontos distribuídos (Point Distribution Models PDM). O PDM consiste de pontos de interesse ou marcadores, que permitem a extração de feições em localizações específicas do objeto. Após tratar a incerteza da localização e oclusão dos marcadores é possível ex- trair as feições mais representativas, obtendo-se um desempenho alto em termos da taxa de reconhecimento. Nesta tese são introduzidas novas formas para extrair e selecionar feições com modelos ativos de formas, que melhoram a taxa de classificação onde há objetos deformáveis. Esta tese é inovadora no sentido de aperfeiçoar o uso de ASMs na classificação de faces humanas, e na sua aplicação no monitoramento visual de outros tipos de objetos deformáveis. / Images are signals that have a lot of information. The objects depicted in images may suf- fer deformations causing changes in their characteristics, which hinders the recognition of the object. The key to the success of a system of pattern recognition in images is to choose properly your approach and a model for the features in the images. One difficulty is to extract and select the features that are most discriminating between different classes used to model an object. The Active Shape Models (ASM) adapt to deformations of an object. The object to be modeled can be represented with a Points Distribution Model (PDM). The PDM consists of points of interest or landmarks that allow the extraction of features in specific locations of the object. After treating the uncertainty of the location and occlu- sion of the landmarks it is possible to extract the most representative features, obtaining a high performance in terms of recognition rate. This thesis introduces new ways to extract and select features with ASMs, which improve the classification rate where deformable objects are present. This thesis is innovative in the sense that improves the use of ASMs in the classification of human faces, and that can be applied in visual monitoring of other types of deformable objects.
6

Metody segmentace biomedicinských obrazových signálů / Methods for biomedical image signal segmentation

Krumpholc, Lukáš January 2009 (has links)
This work deals with methods of segmentation of biomedical image signals. It describes, sums up and compares representative methods of digital image processing. Segmentation based on parametric representation is one of the mentioned methods. So as the basic parameter can be chosen for example luminance and the final binary image is obtained by thresholding. Next described method is segmentation based on edge representation. This method can be divided into edge detection by the help of edge detectors and of Hough transformation. Edge detectors work with the first and second derivation. The following method is region-based segmentation, which can be used for a image with noise. This category can be divided into three parts. The first one is segmentation via splitting and merging regions, when the image is split and the created regions are tested on a defined condition. If the condition is satisfied, the region merges and doesn’t continue splitting. The second one is region growing segmentation, when adjacent pixels with a similar intensity of luminance are grouped together and create a segmentated region. Third one is watershed segmentation algorithm based on the idea of water diffusion on uneven surface. The last group of methods is segmentation via flexible and active contours. Here is described an active shape model proceeding from a possibility to deform models so that they match with sample shapes. Next I also describe method Snakes, where occurs gradual contour shaping up to the edge of the object in the image. For the final editing is used mathematical morphology of segmentated images. I aimed to meet methods of image signals segmentation, to cover the chosen methods as a script in programming language Matlab and to check their properties on images.
7

Detekce lidské postavy v obrazové scéně / Human body detection in a video scene

Šmirg, Ondřej January 2008 (has links)
The project consists of two distinct levels i.e. separation level and diagnostic level. At the separation level, statistical models of gaussians and color are separately used to classify each pixel as belonging to backgroung or foreground. Adopted method is mixture of gaussians.A mixture of gaussians model is suitable here because the results of the picture tests will not depend on the lens opening, but rather on the colors in the backgroung. A mixture of gaussians model for return data seems reasonable. The achieved results the used method on the real sequences are presented in the thesis. Diagnostic level is identified human body on the scene. Adopted method is ASM(Active Shape Models) with PCA(Principal Component Analysis). ASM are statistical models of the shape of human bodies which iteratively deform to fit to an example of the object in a new image.
8

Sledování pohybu srdečního svalstva v ultrazvukovém záznamu / Speckle Tracking Echocardiography

Strecha, Juraj January 2015 (has links)
he thesis deals with proposal of an algorithm and implementation of a program that tracks a motion of the heart muscle in the captured ultrasound video of the heart. The point position estimation is calculated by optical flow method. The Active Shape Model method is used to confirm the accuracy of point's position tracking. The user annotates desired structure of the heart arch first and the application displays new points which represent a new deformed heart shape.
9

Méthodes d'identification, d'aide au diagnostic et de planification utilisant de l'imagerie multi-modalité pour les thérapies focales du cancer de la prostate.

Makni, Nasr 13 December 2010 (has links) (PDF)
Le cancer de la prostate est le premier cancer chez l'homme de plus de 50ans dans les pays industrialisés. Les pratiques diagnostiques et les options thérapeutiques n'ont cessé d'évoluer et les récents progrès de l'imagerie de la prostate rendent possibles la détection de tumeurs de petite taille et le guidage de traitements ciblés dont le but est de minimiser la morbidité de la thérapie. Nous proposons, dans cette thèse, un ensemble de méthodes et de traitements automatisés de données d'imagerie médicale, dans le but d'assister et de guider le praticien dans la prise de décision diagnostique et le geste thérapeutique, pour les traitements focalisés par laser du cancer de la prostate. Dans un premier temps, des méthodes de segmentation et de détection assistées par ordinateur ont développées pour répondre aux problématiques liées à la phase de diagnostic guidé par l'Imagerie à Résonance Magnétique (IRM). D'abord, une nouvelle approche combinant le formalisme des champs de Markov et un modèle statistique de forme est proposée pour l'identification de la prostate en IRM, et l'extraction de ses contours en trois dimensions. Ensuite, nous proposons une méthode pour la segmentation du volume IRM de la glande en zones périphérique et centrale. Cette méthode exploite les techniques d'IRM multi-paramétrique, et s'appuie sur la théorie des fonctions de croyance, ainsi que la modélisation d'un a priori morphologique comme source d'information supplémentaire. Enfin,la détection des tumeurs de la zone périphérique de la glande est abordée en expérimentant un ensemble d'attributs de texture extraits de la géométrie fractale, dans des schémas de classification supervisée et non supervisée. Les performances et particularités de chacune de ces approches sont étudiées et comparées. La deuxième partie de cette thèse s'intéresse au guidage du geste thérapeutique lors des thérapies d'ablation focalisée par laser des tumeurs prostatiques. Une méthode de recalage non rigide est proposée pour fusionner les données de planification et d'imagerie pré-opératoire à l'échographie de guidage per-opératoire. L'originalité de cette méthode réside dans l'utilisation d'un algorithme robuste aux conditions d'initialisation qui permet de minimiser l'intervention de l'opérateur. Nous expérimentons et évaluons nos algorithmes en utilisant des données simulées et des fantômes physiques afin de comparer à une vérité terrain connue. Des examens de patients, analysés par des experts, sont aussi utilisés pour des évaluations dans des conditions réelles, tout en tenant compte de la variabilité inter-observateurs de ces interprétations. Les résultats obtenus montrent que les méthodes développées sont suffisamment précises, rapides et robustes pour pouvoir être utilisées dans un contexte clinique. Ces outils prouvent leur aptitude à offrir un gain en temps d'exécution et en reproductibilité des décisions diagnostiques et thérapeutiques basées sur les modalités d'imagerie de la prostate. Des validations multicentriques et des transferts à l'industrie devraient à l'avenir concrétiser les retombées cliniques de ces travaux qui pourront alors contribuer à l'amélioration des gestes diagnostiques et thérapeutiques du cancer de la prostate.
10

Reconhecimento de íris utilizando algoritmos genéticos e amostragem não uniforme / Iris Recognition using Genetic Algorithms and Non- Uniform Sampling,

Carneiro, Milena Bueno Pereira 06 December 2010 (has links)
The automatic recognition of individuals through the iris characteristics is an e±cient biometric technique that is widely studied and applied around the world. Many image processing stages are necessary to make possible the representation and the interpretation of the iris information. This work presents the state of the art in iris recognition systems where the most re- markable works and the di®erent techniques applied to perform each process- ing stage are quoted. The implementations of each processing stage using traditional techniques are presented and, afterwards, two innovator methods are proposed with the common objective of bringing bene¯t to the system. The ¯rst processing stage should be the localization of the iris region in an eye image. The ¯rst method proposed in this work presents an algorithm to achieve the iris localization through the utilization of the called Memetic Algorithms. The new method is compared to a classical method and the obtained results show advantages concerning e±ciency and processing time. In another processing stage there must be a pixels sampling from the iris region, from where the information used to di®erentiate the individuals is extracted. Traditionally, this sampling process is accomplished in an uni- form way along the whole iris region. It is proposed a pre-processing method which suggests a non uniform pixels sampling from the iris region with the objective of selecting the group of pixels which carry more information about the iris structure. The search for this group of pixels is done through Ge- netic Algorithms. The application of the new method improves the e±ciency of the system and also, allows the generation of smaller templates. In this work, a study on the called Active Shape Models is also accomplished and its application to perform the iris region segmentation is evaluated. To execute the simulations and the evaluation of the methods, it was used two public and free iris images database: UBIRIS database and MMU database. / O reconhecimento automático de pessoas utilizando-se características da íris é uma eficiente técnica biométrica que está sendo largamente estudada e aplicada em todo o mundo. Diversas etapas de processamento são necessárias para tornar possível a representação e a interpretação da informação contida na íris. Neste trabalho é apresentado o estado da arte de sistemas de reconhecimento de íris onde são citados os trabalhos de maior destaque e as diferentes técnicas empregadas em cada etapa de processamento. São apresentadas implementações de cada etapa de processamento utilizando técnicas tradicionais e, posteriormente, são propostos dois métodos inovadores que têm o objetivo comum de trazer benefícios ao sistema. A primeira etapa de processamento é a localização da região da íris na imagem. O primeiro método proposto neste trabalho apresenta um algoritmo para realizar a localização da íris utilizando os chamados Algoritmos Meméticos. O novo método é comparado a um método clássico e os resultadosnobtidos demonstram vantagens no que diz respeito à eficiência e ao tempo de processamento. Em uma outra etapa de processamento deve haver uma amostragem de pixels na região da íris, de onde são retiradas as informações utilizadas para diferenciar os indivíduos. Tradicionalmente, esta amostragem é realizada de maneira uniforme ao longo de toda a região da íris. É proposto um método de pré-processamento que sugere uma amostragem não uniforme de pixels na região da íris com o objetivo de selecionar o conjunto de pixels que carregam mais informações da estrutura da íris. A busca por esse conjunto de pixels é realizada utilizando-se Algoritmos Genéticos. A aplicação deste novo método aumenta a eficiência do sistema e ainda possibilita a geração de templates binários menores. Neste trabalho é realizado, ainda, um estudos dos chamados Active Shape Models e a sua aplicação para segmentar a região da íris é avaliada. Para a simulação e avaliação dos métodos, foram utilizados dois bancos de imagens de íris públicos e gratuitos: o banco de imagens UBIRIS e o banco de imagens MMU. / Doutor em Ciências

Page generated in 0.0712 seconds