• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 71
  • 55
  • 23
  • 12
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 165
  • 122
  • 101
  • 75
  • 72
  • 71
  • 62
  • 57
  • 49
  • 45
  • 44
  • 42
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Desenvolvimento de uma mesa angular rotativa para a usinagem de ultraprecisão / Development of a rotating tilt stage for the machining high precision

Burato, Carlos Umberto 07 February 2003 (has links)
Este trabalho trata do desenvolvimento de uma mesa angular rotativa, para o microposicionamento de peças anesféricas durante a usinagem de ultraprecisão, para atender as tolerâncias nanométricas. Este microposicionamento angular é alcançado com o emprego de atuadores piezelétricos. Por se tratar de um tipo de sistema com movimento de rotação, relata-se o problema encontrado para energizar os atuadores. Este problema é abordado mostrando a alternativa encontrada destacando pontos relevantes, como: a) energização através de anéis coletores deslizantes, de cobre revestidos em prata, fixados no diâmetro externo do dispositivo; b)isolação elétrica entre os anéis e a peça; c) ligação do cabo coaxial vindo dos atuadores piezelétricos; d) aterramento dos cabos coaxiais, utilizando apenas um anel coletor deslizante. Explica como acontece a transmissão do sinal de corrente elétrica do aparelho de controle para os anéis deslizantes e posteriormente aos atuadores piezelétricos, utilizando contatos através de escovas, com 65% de prata e 35% de grafite, com molas duplas para garantir a pressão do contato, fixadas numa base rígida externa ao dispositivo. Destaca-se que a confiabilidade no microposicionamento da peça está na preservação da transmissão de uma corrente elétrica de 50mA para os atuadores. Conclui que é possível realizar o microposicionamento angular da peça que está sendo trabalhada, durante a usinagem de ultraprecisão, garantindo assim suas tolerâncias nanométricas / This work deals with a rotating tilt stage. It considers the micropositioning of aspheric workpieces during high precision machining, in order to obtain nanometric accuracies. It defines this angular micropositioning with the use of piezoelectric actuators. The problem found to energize the actuators, because it is a rotating driving mechanism is discussed. The chosen solution is presented and import points are highlighted, such as: a) to energize through sliding ring collectors, of copper coated in silver, fastened to the external diameter of the device; b) electric isolation between the rings and the workpiece; c) connection of the coax cable of the piezoelectric actuators; d) to ground the coax cables, just using a sliding ring collector. The transfer of electric current of the control system to the sliding rings and piezoelectric actuators is explained. Contacts with 65% of silver and 35% of carbon, with double springs to guarantee the pressure of the contact, fastened to a rigid base are used. The reliability in the micropositioning of a workpiece depends on the preservation of the electric current of 50mA to the actuators. It is shown that it is possible to realize the angular micropositioning of workpiece, during high precision machining, guaranteeing nanometric accuracies
172

Estudo da intensificação da coalescência de emulsões de água em óleo com a aplicação de onda estacionária de ultrassom. / Study of the intensifying water in oil emulsions coalescence with the application of ultrasonic standing wave.

Atehortua, Carlos Mario Giraldo 14 August 2015 (has links)
Considerando que o petróleo quando extraído dos poços em águas profundas chega a ter teor de água superior a 50% e que antes de ser enviado à refinaria deve ter uma quantidade de água inferior a 1%, torna-se necessário o uso de técnicas de redução da quantidade de água. Durante a extração do petróleo formam-se emulsões de água em óleo que são muito estáveis devido a um filme interfacial contendo asfaltenos e/ou resinas ao redor das gotas de água. Nesse trabalho é apresentada a utilização de ondas estacionárias de ultrassom para realizar a quebra dessas emulsões. Quando gotículas de água com dimensões da ordem de 10m, muito menores que o comprimento de onda, são submetidas a um campo acústico estacionário em óleo, a força de radiação acústica empurra as gotículas para os nós de pressão da onda. Uma célula de coalescência com frequência central ao redor de 1 MHz, constituída por quatro camadas sendo uma piezelétrica, uma de acoplamento sólido, uma com o líquido e outra refletora, foi modelada empregando o método da matriz de transferência, que permite calcular a impedância elétrica em função da frequência. Para minimizar o efeito do gradiente de temperatura entre a entrada e a saída da cavidade da célula, quando está em operação, foram utilizados dois transdutores piezelétricos posicionados transversalmente ao fluxo que são excitados e controlados independentemente. Foi implementado um controlador digital para ajustar a frequência e a potência de cada transdutor. O controlador tem como entrada o módulo e a fase da corrente elétrica no transdutor e como saída a amplitude da tensão elétrica e a frequência. Para as células desenvolvidas, o algoritmo de controle segue um determinado pico de ressonância no interior da cavidade da célula no intervalo de frequência de 1,09 a 1,15 MHz. A separação acústica de emulsões de água em óleo foi realizada em uma planta de laboratório de processamento de petróleo no CENPES/PETROBRAS. Foram testados a variação da quantidade de desemulsificante, o teor inicial de água na emulsão e a influência da vazão do sistema, com uma potência de 80 W. O teor final de água na emulsão mostrou que a aplicação de ultrassom aumentou a coalescência de água da emulsão, em todas as condições testadas, quando comparada a um teste sem aplicação de ultrassom. Identificou-se o tempo de residência no interior da célula de separação como um fator importante no processo de coalescência de emulsões de água e óleo. O uso de desemulsificante químico é necessário para realizar a separação, porém, em quantidades elevadas implicaria no uso de processos adicionais antes do repasse final do petróleo à refinaria. Os teores iniciais de água na emulsão de 30 e 50% indicam que o uso da onda estacionária na coalescência de emulsões não tem limitação quanto a esse parâmetro. De acordo com os resultados obtidos em laboratório, essa técnica seria indicada como uma alternativa para integrar um sistema de processamento primário em conjunto com um separador eletrostático. / Considering that oil when extracted from the wells in deep water have water content greater than 50%, and that before to be sent to the refinery must have a quantity of water less than 1%, it becomes necessary to use water amount reduction techniques. During the oil extraction are formed water-in-oil emulsions that are highly stable due to an interfacial film containing asphaltenes and / or resins around the water droplets. This work presents the use of ultrasonic standing waves to perform that emulsion break. When water droplets with dimensions about 10m, much smaller than the wavelength, are placed in a standing acoustic field in oil, the acoustic radiation force pushes the water droplets to the pressure wave nodes. A coalescing chamber with frequency about 1 MHz, with four layers comprising a piezoelectric, a solid coupling, one with the liquid, and another reflector, was modeled using the matrix transfer method, that allows calculating the electrical impedance as a function of frequency. To minimize the effect of the temperature gradient between the inlet and the outlet of the chamber cavity, when it is operating, were used two groups of piezoelectric transducers positioned transverse to the flow which are excited and controlled independently. A digital controller has been implemented to adjust the frequency and the power of each transducer. The controller has as input the modulus and phase of electrical current of the transducer and as output the amplitude of voltage and the frequency. For developed cells, the control algorithm follows an specific resonance peak within the chambers cavity in the frequency range 1.09 to 1.15 MHz. Acoustic separation of water in oil emulsions was carried out on a laboratory oil processing plant. Tests were performed by varying the amount of the chemical demulsifier, the initial water content in the emulsion. The system flow rate was kept constant at 80 W using the control system. Residence time within the separation chamber was identified as an important factor in the water in oil emulsions coalescence process. The use of chemical demulsifier is required to perform the separation, however in large quantities, it implies the use of additional processes before the oil final transfer to the refinery. Initial water contents in the emulsion about 30 and 50% indicate that the use of the acoustic standing wave in the emulsion coalescence has not limitation on this parameter. According to the results obtained in laboratory, this technique would be indicated as an alternative to integrate a primary processing system together with an electrostatic separator.
173

Soft Robotics: Fiber Reinforced Soft Pneumatic Multidirectional Manipulators, Designing, Fabricating, and Testing

Unknown Date (has links)
Traditional robots are made from hard materials like hard plastic or metal and consist of regular rigid mechanical parts. Using those parts has some limitations, like limited dexterity and lack of flexibility. Some of these limitations could be avoided through using a compliant material, because it has higher flexibility and dexterity. It is also safer to be in direct contact with humans. This thesis studies soft pneumatic manipulators (SPMs) that move in multi degrees of freedom (MDOF), which makes them able to perform various functions. The study will include designing, fabricating, and testing three different SPMs with different taper angles -- 0^0, 1^0, and 2^0 -- to measure the effect of varying this geometry on the achievable force by the end effector and the range of bending and elongation. Every single SPM consists of three soft pneumatic chambers to reach unlimited points on its workspace through implementing bending and elongating movements. There are a lot of applications for this kind of soft actuators, like rehabilitation, underwater utilizes, and robots for surgery and rescues. Most soft pneumatic actuators provide one kind of movement, for bending, twisting, or elongating. Combining more than one kind of movement in one soft pneumatic actuator provides considerable contributions to the body of research. The SPMs were controlled and tested to evaluate the achieved force and two kinds of movement, bending and elongating range. The results of each module has been compared with the others to determine which actuator has the best performance. Then a force controller was created to maintain the desired force that was achieved by the end effector. The results indicated that the optimal angle of the SPM was 2^0. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
174

Força de radiação acústica produzida por ondas estacionárias de ultrassom. / Acoustic radiation force generated by ultrasound standing waves.

Ramos, Tiago dos Santos 28 September 2017 (has links)
O estudo da força de radiação acústica é de extrema importância para compreender o fenômeno da levitação acústica, tendo em vista que ela é que permite a levitação de objetos no interior de uma cavidade acústica. A cavidade acústica é uma região do espaço delimitada pelas faces de um transdutor e de um refletor, onde é produzida uma onda estacionária de alta intensidade. Nesta técnica, conhecida como levitação por ondas estacionárias, pequenos objetos são aprisionados nos nós de pressão da onda estacionária. Além desta, também existe uma outra técnica de levitação onde não há a necessidade de se utilizar um refletor, técnica conhecida como levitação de campo próximo, na qual se tem apenas um transdutor e o objeto de face plana que se deseja levitar. Nesta técnica há uma pequena região com ar entre o transdutor e o objeto, sendo que a espessura da camada de ar é muito menor que o comprimento de onda. Neste trabalho foi feito um estudo numérico e experimental da força de radiação acústica em levitadores acústicos de onda estacionária e em levitadores de campo próximo. As simulações foram realizadas no software de elementos finitos COMSOL Mutiphysics. No estudo experimental foi utilizada uma balança eletrônica para medir a força de radiação acústica e uma câmera de alta velocidade para observar o comportamento oscilatório de objetos esféricos no interior da cavidade acústica. O estudo da força de radiação acústica resultou em três principais contribuições. A primeira contribuição está relacionada com a caracterização de efeitos não lineares em um levitador acústico, como o fenômeno de salto (jump phenomenon) e o fenômeno de histerese. A segunda contribuição está relacionada com o estudo numérico e experimental da força de radiação acústica que atua no refletor de um levitador acústico. Por último também foi feito um estudo da força de radiação acústica que atua no refletor para a região do campo próximo. Neste último estudo foi verificado que quando o diâmetro da face do transdutor é pequeno em comparação com o comprimento de onda, surge uma força atrativa sobre o refletor, e esta força pode ser utilizada para levitar um objeto plano em baixo da face do transdutor, sem haver necessidade de utilizar refletores. / The study of the acoustic radiation force is of high relevance to understand the acoustic levitation, since it is responsible for the levitation of small objects in the interior of an acoustic cavity. The acoustic cavity is the region delimited by the surfaces of the transducer and the reflector, where it is generated an acoustic standing wave field of high intensity. In this technique, called standing wave acoustic levitation, small objects are entrapped at the pressure nodes of the standing wave. In addition, there is also another levitation technique where there is no need to use a reflector. This technique is known as near-field levitation, in which there is only one transducer and the flat-faced object to be levitated. In this technique there is a small region with air between the transducer and the object, with the thickness of the air layer being much smaller than the wavelength. In this work, a numerical and experimental study of the acoustic radiation force in acoustic wave levitators and near-field levitators was done. The simulations were performed in the finite element software COMSOL Mutiphysics. In the experimental results, an electronic scale was used to measure the acoustic radiation force and a high speed camera was applied to observe the oscillatory behavior of spherical objects inside the acoustic cavity. The study of acoustic radiation strength resulted in three main contributions. The first contribution is related to the characterization of nonlinear effects in an acoustic levitator, such as the jump phenomenon and the hysteresis phenomenon. The second contribution is related to the numerical and experimental study of the acoustic radiation force that acts on the reflector of an acoustic levitator. Finally, a study of the acoustic radiation force that acts on the reflector for the near field region was also made. In this last study, it was verified that when the transducer is small in comparison with the wavelength, an attractive force appears on the reflector. This force can be used to levitate a flat object below the transducer face, without requiring a reflector.
175

Optimal sensor/actuator placement and switching schemes for control of flexible structures

Potami, Raffaele 28 April 2008 (has links)
The vibration control problem for flexible structures is examined within the context of overall controller performance and power reduction. First, the issue of optimal sensor and actuator placement is considered along with its associated control robustness aspects. Then the option of alternately activating subsets of the available devices is investigated. Such option is considered in order to better address the effects of spatiotemporally varying disturbances acting on a flexible structure while reducing the overall energy consumption. Towards the solution to the problem of optimal device placement, three different approaches are proposed. First, a computationally efficient scheme for the simultaneous placement of multiple devices is presented. The second approach proposes a strategy for the optimal placement of sensors and collocated sensor/actuator pairs, taking into account the influence of the spatial distribution of disturbances. The third approach provides a solution to the actuator location problem by incorporating considerations with respect to preferred spatial regions within the flexible structure. Then the second problem named above is considered. Activating a subset of the available and optimally placed actuators and sensors in a flexible structure provides enhanced performance with reduced energy consumption. Such approach of switching on and off different actuating devices, depending on their local-in-time authority, results in a hybrid system. Therefore the proposed work draws on existing results on hybrid systems and includes an additional degree of freedom, whereby both the actuating devices and the control signals allocated to them are switched in and out. To enable this switching an activation strategy, which insures also that stability-under-switching is guaranteed, is required. Three different strategies are considered for such actuators allocation: first a cost-to-go index is considered, then a cost function based on the mechanical energy of the flexible structure and finally a performance index based on the maximum deviation of the transverse displacement. A flexible aluminum plate was chosen to validate and test the proposed approaches. The set up utilized four pairs of collocated piezoceramic patches that serve to provide sensing and actuating capabilities. Extensive numerical simulations were performed for both the placement strategies and the switching policies proposed, in order to predict the behavior of the flexible plate and provide the optimal actuator and sensor locations that were to be affixed on the flexible structure. Finally, to complete the validation process a sequence of experimental tests were performed. The objective of these tests was to compare the performance of the proposed hybrid control system to traditional non switched control schemes. In order to provide a repeatable perturbation, four of the piezoceramic patches were allocated to simulate a spatiotemporally varying disturbance, while the remaining four patches were used as sensors and controlling actuators. The experimental results showed a significant performance improvement for the switched controller over the traditional controller. Moreover the switched controller exhibited improved robustness towards spatiotemporally varying disturbances while the traditional controller showed a significant loss of controller performance. The improvement achieved in vibration control problems could be extended to a wider range of applications. In particular, although this study was concentrated on a rectangular thin plate, the proposed strategies can be applied to emph{any} structure and more generally to any plant whose dynamics can be represented by a second order linear system. For example, by removing the restriction of spatially fixed actuators and sensors, the proposed theory can be applied to the problem of unmanned vehicles control.
176

Colour changing electro active polymer systems

Hediyeh, Zahabi January 2017 (has links)
Dielectric elastomers are electroactive polymers, which change size and shape in response to an electrical field. Dielectric elastomer actuators (DEAs) are highly promising new technologies in optical applications such as tuneable optical lenses, diffraction gratings and active camouflage. This thesis aims to develop a new approach to create a strain actuated compliant colour changing device that is controlled using DEAs as they offer stretchability, low weight, high efficiency, low cost and the possibility for miniaturisation. Conventional DEAs use transparent elastomeric materials with no significant colour change with strain. Conversely, liquid crystal materials are known to display dynamic colour changing behaviour, thereby making them good candidate materials. The thesis examines both the potential for colour changing soft actuators and the upcoming challenges in this field as well as the key concepts around liquid crystals that exhibit colour change. An initial approach was aimed at creating colour changes using dielectric elastomer actuators that drove a masked positioner. This method showed colour change since the mask changes the colour visualisation. The second approach used polymer dispersed liquid crystals, such as a nematic liquid crystal within a reactive silicone resin. The immiscibility of these compounds resulted in a dispersion of the liquid crystal droplets in the silicone matrix. However, the optical properties could not be controlled through mechanical deformation alone and the alignment of resulting LC droplets in the PDLC films was sensitive to the substrate used to perform the actuation. The next approach used reactive cholesteric liquid crystals (CLC) instead. A thin film coating process was preferred to carefully control the film's thickness by stretching. In free standing films a planar cholesteric alignment was obtained with mesogens aligned parallel to the substrate and colour was achieved based on the selective reflection of light. A transfer print technique was introduced to combine CLC coatings with elastomeric substrates that can be stretched. However, no colour change was achieved in response to mechanical deformation primarily due to the modulus and strength mismatch between the thin film and the elastomeric susbstrate material. Finally, lightly crosslinked liquid crystal elastomers using a combination of reactive and non-reactive liquid crystals were produced that were compatible with elastomer substrate materials. In free standing films planar cholesteric alignment was obtained with mesogens aligned parallel to the substrate. Successfully a reversible colour change based on selective reflection of light was achieved in response to a mechanical deformation.
177

A magneto-rheological actuator for assistive knee braces. / CUHK electronic theses & dissertations collection

January 2009 (has links)
It has been found that magneto-rheological (MR) devices can produce large controllable force/torque while consuming little power. In this research, an MR actuator that can function as a clutch or a brake is developed, in order to be applied to an assistive knee brace. The torque capability and dynamic characteristics of the MR actuator are evaluated. The relationship between the torque output and the applied coil current is given. The response time is also measured. Experimental results show that the MR actuator can provide enough torque for normal activities with sufficiently fast response. IP control and adaptive control are proposed to control the MR actuator. Experiments under these controls are carried out. With anti-windup strategies, both controls achieve good performances. However, adaptive control would be more promising since it can adapt to parameter variations and maintain good performance. An assistive knee brace that contains this MR actuator and a DC motor is developed. In order to study the performances of the knee brace before applied to human body, experiments are conducted for evaluation under a custom-built testing structure. IP-based state control and adaptive control are used to control both the MR actuator and DC motor. Experimental results demonstrate that the MR actuator and DC motor work well together to provide assistance as expected. Compared with that without MR actuator, the evaluation results show that the knee brace with MR actuator is more energy efficient during normal walking, while having better force controllability and safety. / by Chen, Jinzhou. / Adviser: Liao Wei Hsin. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 140-151). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
178

Design and analysis of multifunctional actuators for assistive knee braces. / CUHK electronic theses & dissertations collection

January 2010 (has links)
In this research, a novel magnetorheological (MR) fluids based multifunctional actuator for assistive knee braces is designed. To decrease the dimension of the actuation device while enhancing its perfonnances, a motor and MR fluids are integrated into a single device. With MR fluids, the actuator possesses multiple functions as motor, clutch, and brake while meeting the requirement of nonnal human motion as well. In this thesis, design details and operating principle of the actuator are illustrated, and possible configurations of the motor part and clutch/brake part are discussed. Finite element method is utilized to analyze the magnetic circuits, influence of pennanent magnet on MR fluids, and magnetic flux distribution. Different clutch/brake parts with various inner coils are compared and analyzed, followed by a design optimization to improve the output torque. Prototypes of the multifunctional actuator are fabricated and tested, and characteristics of each function are investigated. As the actuator has multiple functions, modeling is developed for different functions, and system identification is carried out to determine the parameters. Adaptive control is utilized to control the actuator for torque and speed tracking. A smart joint using such a multifunctional actuator is designed, and its prototype is fabricated and tested. Power consumptions of knee brace using the smart joint are investigated during normal walking cycle. The results show that the developed actuator and smart joint are promising to be used in assistive knee braces. / Guo, Hongtao. / Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 154-158). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
179

Study on magnetic localization and actuation of active capsule endoscope. / CUHK electronic theses & dissertations collection

January 2006 (has links)
In the second part, after performing in-vitro experiments to measure the resistant force of the small intestine, we propose a magnetic actuation method. The magnetic marker for localization acts as a seed to be actuated by multiple coils placed outside of the human body. The basic idea is that the magnetic seed is subject to a force and a torque in a magnetic field. An efficient computation scheme is designed and implemented to calculate the coil currents for real-time actuation. Simulations are performed on a six-coil actuation system to evaluate the method. As an alternative method, an internal actuator, which consists of a magnetic spring and can propel itself forward under an alternating current, is introduced to increase the mobility of the capsule and decrease the demand for a strong external field. The external magnetic field is also simulated to orient the internal actuator. / The development of wireless capsule endoscope realizes the examination of the whole gastrointestinal tract. The technology reduces patients' pain and benefits the doctors as well. However, it loses some functions that conventional endoscope owns because of the passive locomotion mode. To improve the situation, an active capsule endoscope is preferred by the community. / We put emphasis on two important problems in design of an active capsule endoscope: localization and actuation. The first part of our work focuses on the study of localization of the capsule taking advantage of the magnetic field. A small permanent magnet is enclosed in the capsule as a marker, and a tracking method is proposed based on the modelling of the marker as an ideal dipole. The five localization parameters are computed by minimizing the differences between the theoretical field values and sensing signals using Levenberg-Marquardt algorithm. One-axis Hall sensors and three-axis magnetoresistive sensors are employed respectively to implement the localization method. The system performance is evaluated by a series of tracking experiments. / Wang Xiaona. / "September 2006." / Adviser: Max Meng. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1771. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 155-171). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
180

Active control of vibration in stiffened structures

Young, Andrew J January 1995 (has links)
Active control of vibration in structures has been investigated by an increasing number of researchers in recent years. There has been a great deal of theoretical work and some experiment examining the use of point forces for vibration control, and more recently, the use of thin piezoelectric crystals laminated to the surfaces of structures. However, control by point forces is impractical, requiring large reaction masses, and the forces generated by laminated piezoelectric crystals are not sufficient to control vibration in large and heavy structures. The control of flexural vibrations in stiffened structures using piezoceramic stack actuators placed between stiffener flanges and the structure is examined theoretically and experimentally in this thesis. Used in this way, piezoceramic actuators are capable of developing much higher forces than laminated piezoelectric crystals, and no reaction mass is required. This thesis aims to show the feasibility of active vibration control using piezoceramic actuators and angle stiffeners in a variety of fundamental structures. The work is divided into three parts. In the first, the simple case of a single actuator used to control vibration in a beam is examined. In the second, vibration in stiffened plates is controlled using multiple actuators, and in the third, the control of vibration in a ring-stiffened cylinder is investigated. In each section, the classical equations of motion are used to develop theoretical models describing the vibration of the structures with and without active vibration control. The effects of the angle stiffener(s) are included in the analysis. The models are used to establish the quantitative effects of variation in frequency, the location of control source(s) and the location of the error sensor(s) on the achievable attenuation and the control forces required for optimal control. Comparison is also made between the results for the cases with multiple control sources driven by the same signal and with multiple independently driven control sources. Both finite and semi-finite structures are examined to enable comparison between the results for travelling waves and standing waves in each of the three structure types. This thesis attempts to provide physical explanations for all the observed variations in achievable attenuation and control force(s) with varied frequency, control source location and error sensor location. The analysis of the simpler cases aids in interpreting the results for the more complicated cases. Experimental results are given to demonstrate the accuracy of the theoretical models in each section. Trials are performed on a stiffened beam with a single control source and a single error sensor, a stiffened plate with three control sources and a line of error sensors and a ring-stiffened cylinder with six control sources and a ring of error sensors. The experimental results are compared with theory for each structure for the two cases with and without active vibration control. / Thesis (Ph.D.)--Mechanical Engineering, 1995.

Page generated in 0.2685 seconds