1 |
Tillämpning av maskininlärning för att införa automatisk adaptiv uppvärmning genom en studie på KTH Live-In Labs lägenheter / Using machine learning to implement adaptive heating; A study on KTH Live-In Labs apartmentsÅsenius, Ingrid January 2020 (has links)
The purpose of this study is to investigate if it is possible to decrease Sweden's energy consumption through adaptive heating that uses climate data to detect occupancy in apartments using machine learning. The application of the study has been made using environmental data from one of KTH Live-In Labs apartments. The data was first used to investigate the possibility to detect occupancy through machine learning and was then used as input in an adaptive heating model to investigate potential benefits on the energy consumption and costs of heating. The result of the study show that occupancy can be detected using environmental data but not with 100% accuracy. It also shows that the features that have greatest impact in detecting occupancy is light and carbon dioxide and that the best performing machine learning algorithm, for the used dataset, is the Decision Tree algorithm. The potential energy savings through adaptive heating was estimated to be up to 10,1%. In the final part of the paper, it is discussed how a value creating service can be created around adaptive heating and its possibility to reach the market. / Syftet med den här rapporten är att undersöka om det är möjligt att sänka Sveriges energikonsumtion genom att i lägenheter införa adaptiv uppvärmning som baserar sig på närvaroklassificering av klimatdata. Klimatdatan som använts i studien är tagen från en av KTH Live-In Labs lägenheter. Datan användes först för att undersöka om det var möjligt att detektera närvaro genom maskininlärning och sedan som input i en modell för adaptiv uppvärmning. I modellen för adaptiv uppvärmning undersöktes de potentiella besparingarna i energibehov och uppvärmningskostnader. Resultaten visar att de bästa featuresen för att klassificera närvaro är ljus och koldioxid. Den maskininlärningsalgoritm som presterade bäst på datasetet var Decision Tree algoritmen. Den potentiella energibesparingen genom införandet av adaptiv uppvärmning uppskattas vara upp till 10,1%. I rapportens sista del diskuteras det hur en värdeskapande tjänst kan skapas kring adaptiv uppvärmning samt dess potential att nå marknaden.
|
2 |
Tillämpning av maskininlärning för att införa automatisk adaptiv uppvärmning genom en studie på KTH Live-In Labs lägenheterVik, Emil, Åsenius, Ingrid January 2020 (has links)
The purpose of this study is to investigate if it is possible to decrease Sweden's energy consumption through adaptive heating that uses climate data to detect occupancy in apartments using machine learning. The application of the study has been made using environmental data from one of KTH Live-In Labs apartments. The data was first used to investigate the possibility to detect occupancy through machine learning and was then used as input in an adaptive heating model to investigate potential benefits on the energy consumption and costs of heating. The result of the study show that occupancy can be detected using environmental data but not with 100% accuracy. It also shows that the features that have greatest impact in detecting occupancy is light and carbon dioxide and that the best performing machine learning algorithm, for the used dataset, is the Decision Tree algorithm. The potential energy savings through adaptive heating was estimated to be up to 10,1%. In the final part of the paper, it is discussed how a value creating service can be created around adaptive heating and its possibility to reach the market.
|
3 |
Adaptivní řízení varny malého pivovaru / Adaptive control of small breweryKalivoda, Jakub January 2014 (has links)
This final thesis deals with adaptive control of small brewery. Contains a short description of brewing technology and adaptive control. Includes design of small brawery and control system based on STM32F407 Cortex-M4 microcontroller. For online identification is used Recursive Least Squares Method. The controller function perform a modified PSD controller with filtered derivative component, reducing the first overshot and dynamic antiwindup. The proposed adaptive controller is implemented into microcontroller. Created device i used for semi-automatic beer production.
|
Page generated in 0.0614 seconds