• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 632
  • 51
  • 44
  • 34
  • 28
  • 25
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1166
  • 1166
  • 493
  • 288
  • 278
  • 274
  • 257
  • 198
  • 139
  • 124
  • 105
  • 104
  • 101
  • 99
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Experimental and Numerical Study of 3D Nanolithography Using Photoinitiator Depletion

Jinwoo Kim (16678479) 02 August 2023 (has links)
<p>Fabricating complex submicron 3D structures can be achieved by multi-photon lithography, especially two-photon lithography is commonly used to obtain precision and flexibility in printing sophisticated sub-micron 3D structures. Several disadvantages stemmed from a two-photon lithography experiment setup, including cost, the necessity of a large laboratory space to use a femtosecond laser and a high-order process. A two-step absorption is chosen instead of two-photon lithography as a primary excitation process achieving the same degree of quadratic optical non- linearity as two-photon lithography at a lower cost with a relatively compact laboratory size. The working mechanism of Two-step absorption is the following. Quadratic nonlinearity comes from radicals from excited triplet states photoinitiators. Ground states of photoinitiators get excited by the incident laser. Those excited singlet photoinitiators go through the intersystem crossing, becoming the ground triplet state of photoinitiators. There are two branches after the ground triplet states, especially for photoinitiator benzil molecules with the incident laser on. Either it becomes a radical without photons received from the incident laser or gets excited again to an excited triplet state by the incident laser. Those excited triplet-state photoinitiator molecules become radicals that occur in polymerization. However, those from the ground triplet states add linearity to polymerization. When it comes to multiple exposures, the linearity becomes problematic, especially outside the region and tails of the voxel. For example, suppose the intensity at two tails of the voxel is 1% relative to the maximum intensity at the focal point. In that case, the absorbed dose will be added up to the maximum intensity at the focal point when it comes to 100 exposures. Quadratic nonlinearity and linearity are jumbled together in the current two-step absorption process. In this work, optimization of photoinitiator concentration was conducted to reduce the linearity. Confined and high throughput 3D structure fabrications are achieved by controlling initiator depletion. Simulations are also developed with multi-physics models to compare with the empirical results.</p>
122

Investigating the Feasibility of 3D Printed Pressure Taps for Surface Pressure Measurements in Wind Tunnel

Thapa, Sahaj 04 May 2023 (has links)
No description available.
123

Defect Detection in Selective Laser Melting

Foster, Moira 01 June 2018 (has links) (PDF)
Additively manufactured parts produced using selective laser melting (SLM) are prone to defects created during the build process due to part shrinkage while cooling. Currently defects are found only after the part is removed from the printer. To determine whether cracks can be detected before a print is completed, this project developed print parameters to print a test coupon with inherent defects – warpage and cracking. Data recorded during the build was then characterized to determine when the defects occurred. The test coupon was printed using two sets of print parameters developed to control the severity of warpage and cracking. The builds were monitored using an accelerometer recording at 12500 samples per second, an iphone recording audio at 48000 samples a second, and a camera taking a photo every build layer. Data was analyzed using image comparison, signal amplitude, Fourier Transform, and Wavelet Decomposition. The developed print parameters reduced warpage in the part by better distributing heat throughout the build envelope. Reducing warpage enabled the lower portion of the part to be printed intact, preserving it to experience cracking later in the build. From physical evidence on the part as well as time stamps from the machine script, several high energy impulse events in the accelerometer data were determined to be when cracking occurred in the build. This project’s preliminary investigation of accelerometers to detect defects in selective laser melting will be used in future work to create machine learning algorithms that would control the machine in real time and address defects as they arise.
124

Experimental Investigation on Cooling Performance of Additively Manufactured Channels

Firat, Mehmet Deniz January 2022 (has links)
No description available.
125

Kontextuell helhet av 3D-printad träullsandwich - Från prefab till printning in-situ / Contextual entirety of 3D-printed wooden sandwich - From prefab to printing in-situ

Lundberg, Rasmus January 2019 (has links)
Projektet syftar till att föreslå en rimlig riktning för hur additiva produktionsmetoder, alltså tillverkningsmetoder som använder lager-på-lager-teknik, kan tänkas påverka arkitekturen, att försöka sätta sig in i teknikerna och komma fram till vilken riktning som upplevs mest givande eller gångbar. Hur ska man nyttja potentialen med den nya tekniken på ett bra sätt? Jag har försökt ta fram en produkt som nyttjar potentialen hos de additiva produktionsmetoderna och som upplevs tänkbar för fullskalig realisering i byggsektorn i en närliggande framtid. Produkten består av en metod för framställning av en sandwichkonstruktion med hög trähalt och troligen lång livslängd. Metoden minskar byggsektorns klimatbelastning och kan ge stora rumsliga kvaliteter och formgivningsmöjligheter. Jag har genom fysiska experiment och utforskande av olika digitala fabrikationsmetoder försökt att visualisera och identifiera möjligheter med dessa nya tekniska hjälpmedel. Genom praktiska tester har jag prövat mina föreställningar av hur dessa metoder kan användas på effektiva sätt. Projektet vidga-des från att initialt omfatta additiva produktionsmetoder till att senare under tillämpningsfasen även omfatta digitala hjälpmedel såsom fotogrammetri och verktyg för parametrisk design. Projektet har resulterat i ett tillvägagångsätt för printning av cellulosabaserade sandwichkonstruktioner i printade formverk av återvinningsbar biokomposit. / The project aims to propose a direction for how additive manufacturing methods can influence architecture, to study the techniques and find out which direction could be perceived as most rewarding or viable. How to use the potential of the new technology in a good way? I have tried to develop a product that utilizes the potential of the additive manufacturing methods and which is conceivable for full-scale realization in the construction sector in the near future. The product consists of a method for producing long lasting sandwich constructions with high wood content. The method reduces the building industry's climate impact and can provide great spatial qualities and design possibilities. Through physical experiments and exploration of various digital fabrication methods, I have tried to visualize and identify possibilities with these new technological aids. Through practical tests, I have tested my ideas of how these methods can be used effectively. The project was expanded from initially studying additive production methods to, later during the application phase, also include digital aids such as photogrammetry and tools for parametric design. The project has resulted in a strategy for printing cellulose-based sandwich constructions in printed molds of recyclable biocomposite.
126

Improvement of Labyrinth Seal Leakage Rates Using Additive Manufacturing

Gasbarra, Austin L 01 December 2020 (has links) (PDF)
The growing popularity of additive manufacturing in commercial applications has al- lowed for new ideas and new ways of thinking when designing components. Further optimization at the component level is possible, though powder metallurgy is in its infancy. This study explores the possibility of using additive manufacturing to develop better labyrinth seals in turbomachinery. Labyrinth seals have a torturous fluid path with high losses, thus limiting the amount of fluid leakage. These types of seals can be non-rotating, allowing them to better take advantage of the additive manufacturing process due to the absence of rotating stresses. Labyrinth seal performance is defined by its ability to limit leakage through a seal. Investigations on the ability to reduce this leakage using the inherent roughness from the additive manufacturing process and the addition of complex geometry only capable of being produced by additive manufacturing are explored. Incompressible and compressible fluid models are utilized in the study. Perfectly smooth seals with tooth counts of four, six, and eight are first simulated using ANSYS FLUENT and compared to theoretical models to determine accuracy. Roughness is then applied to the seals and leakage decreases of 0.5% to 1.5% are experienced for the incompressible model. Decreases of 1.0% to 3.5% are experienced for the compressible model. Flow visualization and line analysis are conducted for all seals tested to understand how fluid flow is behaving within the clearance region of the seal and seal chambers. Several additive manufacturing geometries are simulated against a control seal to determine geometries with the largest effect on leakage rates. These geometries are then adapted to a six tooth seal and simulated with roughness. This additively manufactured seal is then compared to the smooth and rough six tooth seal for both incompressible and compressible fluids. Leakage was decreased by 5% to 8% for the incompressible model and 5% to 7% reductions for the compressible model when compared to the smooth seal. Flow visualization and line analysis were also conducted for the additively manufactured six tooth seal. A basic outline for an experiment and test stand were developed for future work.
127

Feasibility of Fused Deposition of Ceramics with Zirconia and Acrylic Binder

Page, Lindsay V. 01 June 2016 (has links) (PDF)
Processing of ceramics has always been difficult due to how hard and brittle the material is. Fused Deposition of Ceramics (FDC) is a method of additive manufacturing which allows ceramic parts to be built layer by layer, abetting more complex geometries and avoiding the potential to fracture seen with processes such as grinding and milling. In the process of FDC, a polymeric binder system is mixed with ceramic powder for the printing of the part and then burned out to leave a fully ceramic part. This experiment investigates a new combination of materials, zirconia and acrylic binder, optimizing the process of making the material into a filament conducive to the printer system and then performing trials with the filament in the printer to assess its feasibility. Statistical analysis was used to determine optimal parameter levels using response surface methodology to pinpoint the material composition and temperature yielding the highest quality filament. It was discovered that although the mixture had adequate melting characteristics to be liquefied and printed into a part, the binder system did not provide the stiffness required to act as a piston to be fed through the printer head. Further studies should be completed continuing the investigation of zirconia and acrylic binder, but with added components to increase strength and rigidity of the filament.
128

Quasi-Static Tensile and Fatigue Behavior of Extrusion Additive Manufactured ULTEM 9085

Pham, Khang Duy 08 February 2018 (has links)
Extrusion additive manufacturing technologies may be utilized to fabricate complex geometry devices. However, the success of these additive manufactured devices depends upon their ability to withstand the static and dynamic mechanical loads experienced in service. In this study, quasi-static tensile and cyclic fatigue tests were performed on ULTEM 9085 samples fabricated by fused deposition modeling (FDM). First, tensile tests were conducted following ASTM D638 on three different build orientations with default build parameters to determine the mechanical strength of FDM ULTEM 9085 with those supplied by the vendor. Next, different build parameters (e.g. contour thickness, number of contours, contour depth, raster thickness, and raster angle) were varied to study the effects of those parameters on mechanical strength. Fatigue properties were investigated utilizing the procedure outlined in ASTM D7791. S-N curves were generated using data collected at stress levels of 80%, 60%, 30% and 20% of the ultimate tensile stress with an R-ratio of 0.1 for the build orientation XZY. The contour thickness and raster thickness were increased to 0.030 in. to determine the effect of those two build parameters on tension-tension fatigue life. Next, the modified Goodman approach was used to estimate the fully reversed (R=-1) fatigue life. The initial data suggested that the modified Goodman approach was very conservative. Therefore, four different stress levels of 25%, 20%, 15% and 10% of ultimate tensile stress were used to characterize the fully reversed fatigue properties. Because of the extreme conservatism of the modified Goodman model for this material, a simple phenomenological model was developed to estimate the fatigue life of ULTEM 9085 subjected to fatigue at different R-ratios. / Master of Science
129

Optical Measurements of High-Viscosity Materials Using Variations of Laser Intensity Incident on a Semi-Rigid Vessel for use in Additive Manufacturing

Pote, Timothy Ryan 16 May 2017 (has links)
Additive manufacturing is a growing field dominated by printing processes that soften and re-solidify material, depositing this material layer by layer to form the printed shape. Increasingly, researchers are pursuing new materials to enable fabrication of a wider variety of associated capabilities. This includes fabrication with high-viscosity materials of many new classes of material compositions, such as doping for magnetic or electrically conducting polymers. These additives complicate the materials deposition process by requiring complex, non-linear calibration to synchronize these new candidate materials with the additive manufacturing software and hardware. In essence, additive manufacturing is highly dependent on identifying the delicate balance between materials properties, hardware, and software-which is currently realized via a time-consuming and costly iterative calibration process. This thesis is concerned with reducing this cost of calibration, in particular by providing a time-based metric based on material viscosity for material retraction at the conclusion of each extrusion. It presents a novel non-contact method of determining the material retraction rate (during reversal of extrusion), by measuring the variation in laser intensity resulting from the deformation of the material reservoir due to change in material pressure. Commercially available laser measurement systems cost more than $20,000 and are limited to 1 μm at a 300 ms (3 Hz) sampling rate. The experimental setup presented in this thesis costs less than $100 and is capable of taking measurements of 1 - 2 μm at a 0.535 ms (1870 Hz) sampling rate. For comparison, the stepper motor driving the material extruder operates at 0.667 ms (1500 Hz). Using this experimental setup, an inverse correlation is shown to exist between the viscosity of a material and the rate at which the material is retracted. Using this correlation and a simplified material analysis process, one can approximate the retraction time necessary to calibrate new materials, thereby significantly improving initial estimated calibration settings, and thus reducing the number of calibration iterations required to ready a new material for additive manufacturing. In addition, the insight provided into the material response can also be used as the basis for future research into minimizing the calibration process. / Master of Science
130

An improved distortion compensation approach for additive manufacturing using optically scanned data

Afazov, S., Semerdzhieva, E., Scrimieri, Daniele, Serjouei, A., Kairoshev, B., Derguti, F. 29 March 2021 (has links)
Yes / This paper presents an improved mathematical model for calculation of distortion vectors of two aligned surface meshes. The model shows better accuracy when benchmarked to an existing model with exceptional mathematical conditions, such as sharp corners and small radii. The model was implemented into a developed distortion compensation digital tool and applied to an industrial component. The component was made of Inconel 718 and produced by laser powder bed fusion 3D printing technology. The digital tool was utilised to compensate the original design geometry by pre-distortion of its original geometry using the developed mathematical model. The distortion of an industrial component was reduced from approximately ±400 µm to ±100 µm for a challenging thin structure subjected to buckling during the build process.

Page generated in 0.1284 seconds