• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 1
  • Tagged with
  • 27
  • 13
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation into the role of Fas ligand as a potential immunomodulatory molecule for CNS gene therapy

Regardsoe, Emma Louise January 2000 (has links)
No description available.
2

Investigation of a Trimeric Hemagglutinin Stem Domain from Influenza B for a Universal Vaccine

Duran, Amparo 28 September 2018 (has links)
Influenza infection occurs in as much as 5–15% of the world population, resulting in 3–5 million cases of severe illness and up to 500,000 deaths annually. According to the CDC, on average 24% of all influenza positive respiratory samples during 2001 to 2011 tested positive for Influenza B. Influenza has two main surface glycoproteins, neuraminidase (NA) and hemagglutinin (HA), HA being responsible for the binding of the virus to the host cell. Currently, seasonal influenza vaccines are produced using two strains of Influenza A and one or two strains of Influenza B viruses recommended by the World Health Organization (WHO). These vaccines are mainly targeting the head domain of the HA protein, which mutates constantly, hence the need for annual vaccine updates. The goal of this research is to develop an experimental universal vaccine against influenza B and increase our knowledge to help pave the way for finding a one-time vaccination alternative, reducing the need for a yearly flu shot. To achieve the above, protection and toxicity studies were conducted in DBA/2 mice immunized with a designed HA2 adenoviral-vectored vaccine targeting the HA stem region of influenza B. Results showed that this designed vaccine was able to confer 100% survival protection, this was supported by lower viral titer in trachea and lung tissues. Additionally, we studied the influence of CD40L as a targeting adjuvant, by analyzing its effect on the humoral and cellular immune response, where results showed that it has a significant effect by inducing a higher TH1-bias response. This research is the first report that leads us to a better understanding of the potential use of a conserved consensus HA2 sequence to induce protection against influenza B virus.
3

Construction of IVa2-deficient adenovirus using complementing cell lines

Brey, Simone January 1999 (has links)
No description available.
4

Human adenovirus serotype 5 vaccines : routes of delivery and formulations for successful immunization

Dekker, Joseph Dylan 09 November 2010 (has links)
Delivery of medicinal products to specific targets can be aided by utilizing different routes of administration. Particular routes may be advantageous when delivering products designed for therapeutic drug delivery, gene therapy, or vaccination. Vaccine candidates must remain stable, be delivered to their proper compartments, and promote sufficient immune responses to their delivered antigens, properties that can be modulated by formulation, adjuvants, and alternate routes of administration. Recently, the nasal passageway has been recognized as a promising route, as mucosally delivered vaccines have the advantage of inducing protection at both mucosal surfaces, a common site of infection, and systemically. Human adenovirus serotype 5 (Ad5) is a candidate vaccine vector capable of being delivered through several routes and inducing strong immune responses to its delivered transgene. The studies presented include vaccination strategies following different routes of administration with various formulation components to determine the ability of Ad5 to deliver its transgene and induce immune responses. The first study screens formulation candidates’ effects on an Ad5-based vaccine’s transduction in vitro, cellular and humoral immune responses in vivo, and efficacy upon challenge in mice. Screening formulation candidates in vitro can eliminate ineffective formulations, thereby limiting animal testing. An Ad5-based Ebola virus vaccine delivered in a combination of mannitol, sucrose, and the surfactant, pluronic F68, improves survival against lethal Ebola challenge in a mouse model compared to delivery in PBS alone. The second study tests the effect of an intravenously delivered Ad5-based vaccine complexed with anti-Ad5 neutralizing antibodies on cellular and humoral immune responses. Different antibody ratios complexed to the Ad5 vector are able to induce disparate cellular and humoral responses. Ratios initiating a strong humoral response towards the Ad5 vector correlate with a reduction of the humoral response against the transgene and few transgene targeted effector T cells. Accordingly, ratios leading to minor humoral responses to the Ad5 vector resulted in stronger humoral responses to the transgene and a strong effector memory T cell response. Taken together, these studies provide insight on how to achieve necessary immune responses in vaccine protocols by testing routes of administration, formulations, and surface modifications of the Ad5 vector. / text
5

A novel Adenoviral miRNA, a candidate for development of a novel gene therapy startegy

Danish, Benjamin January 2019 (has links)
In 2017, a novel miRNA was found at the MLTU-region of adenoviral genome, termed as MLP-TSS-sRNA. This current study started with performing a series of mutations in the MLP-TSS-sRNA in order to investigate how the MLP-TSS-sRNA as a single stranded small RNA was protected from rapid RNA degradation in transfected cells (in vivo). Since the hairpin structure of this small RNA was considered to be the reason to its high stability, the deletions of nucleotides were occurred inside the complementary region and the loop of the hairpin structure. Three variants of MLP-TSS-sRNAs were therefore transfected into the A549-lung epithelial cancer cell line and measured during times series studies. The results showed that the wild type form of this small RNA has the highest stability. Subsequently, a panel of different synthetic single-stranded RNAs, in which the MLP-TSS-sRNA sequence was modified to target different genes of interest, was used to compare its suppressive efficiency to the more traditional double stranded small interfering RNA “siRNA” or miRNA mimics. To this, the MLP-TSS-sRNA sequence was modified in such a way that it targeted the Dicer mRNA, thus termed as 3s-dicer-miRNA. Successful suppression of the Dicer mRNA as a consequence of using this modified 3s-dicer-miRNA sequence could emphasize that, theoretically, any possible mRNA of interest could be targeted. To express this miRNA inside a host cell, its sequence was incorporated in a CMV-driven plasmid vector system, upstream of the gene encoding for the HDV-ribozyme, which showed to be functional in vitro, but not in vivo. On the other hand, the vector system showed a clear tendency of being functional even in vivo, once it was put into the test by co-transfecting it with a Dicer plasmid inside 293-cells.
6

Estudo do efeito da remediação simultânea dos genes p16INK4a  e p53 mediada pelo adenovírus bicistrônico Adp16IRESp53 em um modelo de carcinoma de pulmão humano. / Effect of the simultaneous replacement of p16INK4a and p53 genes mediated by a bicistronic adenovirus Adp16IRESp53 in a human lung carcinoma model.

Gregorio, Juliana Colozzo 29 August 2008 (has links)
Considerando que várias mutações gênicas estão envolvidas no estabelecimento dos tumores, surge a idéia de que o alcance da melhor eficiência no tratamento do câncer é dado pela entrega de múltiplos genes. Este trabalho apresenta a construção, produção e caracterização funcional in vitro e in vivo do vetor adenoviral bicistrônico Adp16IRESp53 e dos monocistrônicos Adp16 e Adp53 em modelo de câncer de pulmão. Nossos resultados indicam uma forte indução de morte celular nas células H358 transduzidas com Adp16IRESp53 em comparação com vetores monocistrônicos Adp16, Adp53 ou o reporter AdeGFP e/ou AdLacZ. Nos ensaios in vivo, utilizando modelo xenografico onde as células H358 foram implantadas no subcutâneo de camundongos atímicos Balb/C nude, pudemos confirmar também in vivo a significativa inibição do crescimentos dos tumores tratados com Adp16IRESp53. Em conclusão, a remediação simultânea de p16INK4a e p53, mediada pelo arranjo bicistrônico, pode ser considerada como uma estratégia promissora para terapia gênica do câncer de pulmão. / This work presents the construction, production and functional evaluation in vitro and in vivo of the bicistronic adenoviral vector Ap16IRESp53 as well as the monocistronic vectors Adp16 and Adp53 in a lung cancer model. Considering that several mutation events are involved in tumorigenesis, comes the idea that a greater efficiency in cancer treatment would be reached with delivery of multiples genes. Our data demonstrate a strong cell death effect in H358 cells transduced with Adp16IRESp53 when compared with Adp16, Adp53 or the reporter AdeGFP and/or AdLacZ. For the in vivo studies, we have used H358 cells implanted subcutaneously in athymic Balb/c nude mice. Our data show significant suppression of tumors treated with the therapeutic adenoviral vector, Adp16IRESp53. In conclusion, the simultaneous replacement of p16INK4a and p53, mediated by the bicistronic vector, may prove to be a promising strategy for gene therapy of lung cancer.
7

Estudo do efeito da remediação simultânea dos genes p16INK4a  e p53 mediada pelo adenovírus bicistrônico Adp16IRESp53 em um modelo de carcinoma de pulmão humano. / Effect of the simultaneous replacement of p16INK4a and p53 genes mediated by a bicistronic adenovirus Adp16IRESp53 in a human lung carcinoma model.

Juliana Colozzo Gregorio 29 August 2008 (has links)
Considerando que várias mutações gênicas estão envolvidas no estabelecimento dos tumores, surge a idéia de que o alcance da melhor eficiência no tratamento do câncer é dado pela entrega de múltiplos genes. Este trabalho apresenta a construção, produção e caracterização funcional in vitro e in vivo do vetor adenoviral bicistrônico Adp16IRESp53 e dos monocistrônicos Adp16 e Adp53 em modelo de câncer de pulmão. Nossos resultados indicam uma forte indução de morte celular nas células H358 transduzidas com Adp16IRESp53 em comparação com vetores monocistrônicos Adp16, Adp53 ou o reporter AdeGFP e/ou AdLacZ. Nos ensaios in vivo, utilizando modelo xenografico onde as células H358 foram implantadas no subcutâneo de camundongos atímicos Balb/C nude, pudemos confirmar também in vivo a significativa inibição do crescimentos dos tumores tratados com Adp16IRESp53. Em conclusão, a remediação simultânea de p16INK4a e p53, mediada pelo arranjo bicistrônico, pode ser considerada como uma estratégia promissora para terapia gênica do câncer de pulmão. / This work presents the construction, production and functional evaluation in vitro and in vivo of the bicistronic adenoviral vector Ap16IRESp53 as well as the monocistronic vectors Adp16 and Adp53 in a lung cancer model. Considering that several mutation events are involved in tumorigenesis, comes the idea that a greater efficiency in cancer treatment would be reached with delivery of multiples genes. Our data demonstrate a strong cell death effect in H358 cells transduced with Adp16IRESp53 when compared with Adp16, Adp53 or the reporter AdeGFP and/or AdLacZ. For the in vivo studies, we have used H358 cells implanted subcutaneously in athymic Balb/c nude mice. Our data show significant suppression of tumors treated with the therapeutic adenoviral vector, Adp16IRESp53. In conclusion, the simultaneous replacement of p16INK4a and p53, mediated by the bicistronic vector, may prove to be a promising strategy for gene therapy of lung cancer.
8

Novel adenoviral vectored vaccines and the implications of viral diversity in therapeutic strategies against Hepatitis C Virus infection

Kelly, Christabel January 2013 (has links)
Hepatitis C virus (HCV) is a major global pathogen estimated to infect over 170 million people worldwide. A recent study has shown that vaccination with adenoviral vectors, based on rare human and simian serotypes encoding the non-structural (NS) proteins of HCV, induces highly potent, multi-specific and durable T cell responses in healthy human volunteers. In this thesis I assess the safety and immunogenicity of these vaccines (ChAd3–NSmut and Ad6-NSmut), for the first time in HCV infected patients. This work also explores whether vaccine-induced T cell responses target in vivo circulating HCV antigens and common naturally occurring epitope variants. Patients with treatment naive chronic genotype 1 HCV infection were vaccinated (i.m.) with ChAd3-NSmut and Ad6-NSmut in a heterologous prime boost schedule, either with or without current IFN and ribavirin (IFN/RBV). Epitope-specific T cell responses were defined by fine mapping using HCV peptides. Circulating viral genomic sequence was determined in vaccinated patients at baseline and at any point of viral relapse. Cross-reactivity of vaccine-induced T cell responses was determined in T cell assays, using peptides corresponding to both circulating host virus and common population HCV epitope variants. An in vitro dendritic cell /T cell priming model was used to identify possible candidates for a cross-reactive vaccine immunogen at the most immunodominant epitope, NS3<sub>1406</sub>. 33 patients were vaccinated. Vaccination was well tolerated. At the highest vaccine dose (2.5 x 10<sup>10</sup>vp) vaccine-induced T cell responses were detectable in 11/20 patients receiving concurrent IFN/RBV and 2/4 patients receiving vaccination alone. In total 14 antigenic targets were identified, 2 of which have not previously been described. However, T cell responses were of lower magnitude and more narrowly focused than those observed in healthy volunteers vaccinated with the same regimen. Analysis of viral sequence showed that in many cases vaccine-induced T cells did not target the circulating virus. At the most immunodominant epitope (NS3<sub>1406</sub>), T cells induced by vaccination failed to target common circulating genotype 1 HCV variants. An in vitro model suggested that in order to target all genotype 1 sequences at this epitope, it would be necessary to insert both a genotype 1a and 1b version of this epitope into a vaccine immunogen. Vaccination with adenoviral vectors induces T cell responses in patients with chronic HCV infection, however immune responses are attenuated compared with healthy volunteers. Ultimately a successful therapeutic or prophylactic vaccine strategy will rely on inducing responses that target conserved or cross-reactive epitopes.
9

Cancer Immunotherapy : A Preclinical Study of Urinary Bladder Cancer

Ninalga, Christina January 2006 (has links)
<p>Bacillus Calmette Guérin (BCG), or attenuated Mycobacterium bovis, is the gold standard of immunotherapy in the clinic to treat superficial bladder cancer. However, setbacks remain due to a high recurrence rate, side effects, and BCG-refractory disease. In this thesis, we explored the use of novel immunotherapeutic agents such as CpG oligodeoxynucleotides (CpG ODNs) or synthetic ODNs containing unmethylated CpG dinucleotides. Since unmethylated CpG motifs are predominant in bacterial but not vertebrate DNA, they function as a “danger signal” leading to a potent immune response.</p><p>To be able to test various immunotherapeutic agents, we optimized subcutaneous (s.c.), metastatic, and orthotopic models using the murine bladder-49 (MB49) cancer cell line. In the orthotopic model, we show that poly-L-lysine promotes MB49 attachment to the bladder leading to 100% tumor take. In addition, Clorpactin (sodium oxychlorosene) potently enhances adenoviral transduction in the bladder.</p><p>Utilizing the MB49 model, we compare CpG ODNs with BCG and demonstrate the increased efficacy of CpG ODNs which could cure both s.c. and aggressive orthotopic bladder cancer. In our model, type B ODNs were most optimal and the antitumor response required T cells in order to induce regression and tumor-specific immunity. We also combined CpG ODNs with adenoviral vectors (Ad) expressing the immunostimulatory molecules CD40L, TRANCE, lymphotactin, IL2 or IL15. However, we show that CpG ODNs are effective as a monotherapy and adenoviral vectors did not enhance the effect.</p><p>AdCD40L was also used to genetically modify human dendritic cells (DCs). AdCD40L-transduced DCs not only had a higher and prolonged expression of the Th1 cytokine IL12 compared to TNFα-matured DCs, but CD40L-activated DCs could also resist the suppressive effects of IL10 and TGFβ. Since TNFα is commonly used in clinical DC vaccination protocols and because tumors often secrete immunosuppressive cytokines, these data have important implications for optimizing cancer immunotherapy.</p>
10

Cancer Immunotherapy : A Preclinical Study of Urinary Bladder Cancer

Ninalga, Christina January 2006 (has links)
Bacillus Calmette Guérin (BCG), or attenuated Mycobacterium bovis, is the gold standard of immunotherapy in the clinic to treat superficial bladder cancer. However, setbacks remain due to a high recurrence rate, side effects, and BCG-refractory disease. In this thesis, we explored the use of novel immunotherapeutic agents such as CpG oligodeoxynucleotides (CpG ODNs) or synthetic ODNs containing unmethylated CpG dinucleotides. Since unmethylated CpG motifs are predominant in bacterial but not vertebrate DNA, they function as a “danger signal” leading to a potent immune response. To be able to test various immunotherapeutic agents, we optimized subcutaneous (s.c.), metastatic, and orthotopic models using the murine bladder-49 (MB49) cancer cell line. In the orthotopic model, we show that poly-L-lysine promotes MB49 attachment to the bladder leading to 100% tumor take. In addition, Clorpactin (sodium oxychlorosene) potently enhances adenoviral transduction in the bladder. Utilizing the MB49 model, we compare CpG ODNs with BCG and demonstrate the increased efficacy of CpG ODNs which could cure both s.c. and aggressive orthotopic bladder cancer. In our model, type B ODNs were most optimal and the antitumor response required T cells in order to induce regression and tumor-specific immunity. We also combined CpG ODNs with adenoviral vectors (Ad) expressing the immunostimulatory molecules CD40L, TRANCE, lymphotactin, IL2 or IL15. However, we show that CpG ODNs are effective as a monotherapy and adenoviral vectors did not enhance the effect. AdCD40L was also used to genetically modify human dendritic cells (DCs). AdCD40L-transduced DCs not only had a higher and prolonged expression of the Th1 cytokine IL12 compared to TNFα-matured DCs, but CD40L-activated DCs could also resist the suppressive effects of IL10 and TGFβ. Since TNFα is commonly used in clinical DC vaccination protocols and because tumors often secrete immunosuppressive cytokines, these data have important implications for optimizing cancer immunotherapy.

Page generated in 0.1979 seconds