51 |
Chronic Myocardial Infarction Induces Phenotypic and Functional Remodeling in the Guinea Pig Cardiac PlexusHardwick, Jean, Southerland, Elizabeth M., Ardell, Jeffrey L. 01 December 2008 (has links)
Chronic myocardial infarction (CMI) is associated with remodeling of the ventricle and evokes adaption in the cardiac neurohumoral control systems. To evaluate the remodeling of the intrinsic cardiac nervous system following myocardial infarction, the dorsal descending coronary artery was ligated in the guinea pig heart and the animals were allowed to recover for 7-9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential configuration compared with age-matched controls and sham-operated animals. The intrinsic cardiac neurons from chronic infarcted hearts did demonstrate an increase in evoked action potential (AP) frequency (as determined by the number of APs produced with depolarizing stimuli) and an increase in responses to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP)-induced increases in intrinsic cardiac neuron-evoked AP frequency were similar between control and CMI animals. Immunohistochemical analysis demonstrated a threefold increase in percentage of neurons immunoreactive for neuronal nitric oxide synthase (NOS) in CMI animals compared with control and the additional expression of inducible NOS by some neurons, which was not evident in control animals. Finally, the density of mast cells within the intrinsic cardiac plexus was increased threefold in preparations from CMI animals. These results indicate that CMI induces a differential remodeling of intrinsic cardiac neurons and functional upregulation of neuronal responsiveness to specific neuromodulators.
|
52 |
Modulation of Nociceptive Transmission by Pituitary Adenylate Cyclase Activating Polypeptide in the Spinal Cord of the MouseOhsawa, Masahiro, Brailoiu, G. Cristina, Shiraki, Maho, Dun, Nae J., Paul, Kirstein, Tseng, Leon F. 01 November 2002 (has links)
Superficial layers of the dorsal horn receive a dense plexus of nerve fibers immunoreactive to pituitary adenylate cyclase activating polypeptide (PACAP). In vivo experiments were conducted in the mice to evaluate the effects of PACAP-38, herein referred to as PACAP, PACAP receptor antagonist PACAP(6-38) and PACAP-antiserum on nociceptive behaviors induced by radiant heat, intrathecally administered N-methyl-D-aspartate (NMDA) or intraplantarly administered formalin. PACAP (0.05-0.5μg) dose-dependently decreased the paw-withdrawal latencies induced by thermal stimulation and enhanced the aversive licking and biting behaviors induced by intrathecally injected NMDA. Pretreatment with the PACAP receptor antagonist PACAP(6-38) (0.5-2μg) or PACAP-antiserum (1:500-2000 dilution) dose-dependently attenuated the second phase, but not the first phase, of nociceptive responses to formalin. Next, the effects of PACAP on NMDA- and kainate-induced currents evoked in single dorsal horn neurons were studied. Whole-cell patch recordings were made from superficial dorsal horn neurons of spinal cord slices from 14- to 20-day-old mice. PACAP at the concentrations of 100 and 200nM, which caused no significant change of holding currents, increased NMDA-but not kainate-induced currents in superficial dorsal horn neurons. Our results suggest that exogenously applied PACAP sensitizes the dorsal horn neurons to formalin stimulation, and facilitates NMDA receptor-mediated nociceptive response. As a corollary, PACAP, which may be released from primary afferent fibers potentiates nociceptive transmission to the dorsal horn by interacting primarily with NMDA receptors.
|
53 |
Konformace adenylátcyklázového toxinu Bordetella pertussis. / Conformation of the adenylate cyclase toxin of Bordetella pertussis.Motlová, Lucia January 2021 (has links)
This work is focused on the RTX (Repeats in ToXin) domains structure of selected RTX toxins and its impact on secretion and protein folding. The structural analysis included RTX domains of ApxI (Actinobacillus pleuropneumoniae-RTX-toxin I) from Actinobacillus pleuropneumoniae, HlyA (Alfa-hemolysin) from Escherichia coli and LtxA (Leukotoxin A) from Aggregatibacter actinomycetemcomitans and blocs 4 a 5 RTX domain CyaA (adenylate cyclase toxin) from Bordetella pertussis. The structures of LtxA RTX domain and CyaA RTX blocs 4 and 5 were obtained and characterized. Two models of CyaA RTX domain were built based on SAXS (Small Angle X-ray Scattering) model, previously solved RTX structures and RTX structures presented here.
|
54 |
Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors / ヒトアデニル酸キナーゼ2は細胞内エネルギー分子の分配を介して血液前駆細胞の分化運命を制御するSaiki, Norikazu 23 May 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第21265号 / 医科博第92号 / 新制||医科||7(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 松田 道行, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
55 |
Cholera Toxin Activates The Unfolded Protein Response Through An Adenylate Cyclase-independent MechanismVanBennekom, Neyda 01 January 2013 (has links)
Cholera toxin (CT) is a bacterial protein toxin responsible for the gastrointestinal disease known as cholera. CT stimulates its own entry into intestinal cells after binding to cell surface receptors. Once internalized, CT is delivered via vesicle-mediated transport to the endoplasmic reticulum (ER), where the CTA1 subunit dissociates from the rest of the toxin and is exported (or translocated) into the cytosol. CTA1 translocates from the ER lumen into the host cytosol by exploiting a host quality control mechanism called ER-associated degradation (ERAD) that facilitates the translocation of misfolded proteins into the cytosol for degradation. Cytosolic CTA1, however, escapes this fate and is then free to activate its target, heterotrimeric G-protein subunit alpha (Gsα), leading to adenlyate cyclase (AC) hyperactivation and increased cAMP concentrations. This causes the secretion of chloride ions and water into the intestinal lumen. The result is severe diarrhea and dehydration which are the major symptoms of cholera. CTA1’s ability to exploit vesicle-mediated transport and ERAD for cytosolic entry demonstrates a potential link between cholera intoxication and a separate quality control mechanism called the unfolded protein response (UPR), which up-regulates vesicle-mediated transport and ERAD during ER stress. Other toxins in the same family such as ricin and Shiga toxin were shown to regulate the UPR, resulting in enhanced intoxication. Here, we show UPR activation by CT, which coincides with a marked increase in cytosolic CTA1 after 4 hours of toxin exposure. Drug induced-UPR activation also increases CTA1 delivery to the cytosol and increases cAMP concentrations during intoxication. We investigated whether CT stimulated UPR activation through Gsα or AC. Chemical activation of Gsα induced the UPR and increased CTA1 delivery to the cytosol. However, AC activation did iv not increase cytosolic CTA1 nor did it activate the UPR. These data provide further insight into the molecular mechanisms that cause cholera intoxication and suggest a novel role for Gsα during intoxication, which is UPR activation via an AC-independent mechanism
|
56 |
An acrolein-derivatized cAMP antiserum to study cAMP signaling and visualization in the enteric nervous system-implications for gut inflammationGuzman, Jorge Enrique 22 December 2004 (has links)
No description available.
|
57 |
Aspects of the transcriptional and translational regulation of nitric oxide synthase 1Pierson, Shawn M. 19 April 2005 (has links)
No description available.
|
58 |
Genetic And Biochemical Analysis Of Novel Borrelia Burgdorferi Genes Bb0244 And Bb0246Ruiz-Rodriguez, Christian J 01 January 2024 (has links) (PDF)
As the cause of the most common vector-borne disease in the US, Borrelia burgdorferi continues to affect an estimated hundreds of thousands of patients each year. The spirochete boasts one of the most complex genomes in comparison to all other prokaryotes as it is fragmented across up to 21 different replicons. Moreover, the functions of a majority of the encoded genes remain unknown. Gene of unknown function, bb0244, along with putative co-transcribed genes bb0245, and bb0246 are hypothesized to be involved in the vital functions of cell division and cell wall biogenesis. B. burgdorferi lacking bb0244 demonstrate a significant growth and cell division defect. Gene bb0245 is annotated to encode a putative bactofilin protein and gene bb0246 is annotated to encode a putative murein DD-endopeptidase involved in peptidoglycan cleavage. Given the possible functional relatedness of the three encoded proteins, this study sought to identify protein-protein interactions between the target proteins themselves and additionally with any other B. burgdorferi proteins. The study was performed using a Bacterial Adenylate Cyclase Two-Hybrid System (BACTH) and a combination of screening/selection plates to confirm the results. In addition, genomic DNA libraries were used in conjunction with DNA sequencing in order to study potential interactions with other proteins across the B. burgdorferi genome. Ultimately the results of the study suggested that there is likely no direct interaction between BB0244 and BB0246. Further experiments did identify a possible interaction between BB0246 and BBK41. Ultimately, there is no doubt that understanding protein-protein interactions like these is imperative to fully understanding the B. burgdorferi genome and potentially aiding in the development of novel diagnostic tools and/or therapeutics.
|
59 |
Modulation de l'expression des protéines Gi et de la signalisation de l'adénylate cyclase par le monoxyde d'azote : implication dans la régulation de la pression sanguineBassil, Marcel January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
60 |
Adenylátcyklázový toxin Bordetella pertussis jako marker pro studium endocytózy komplementového receptoru CD11b/CD18. / Adenylate-cyclase toxin of Bordetella pertussis as a marker for the study of the complement receptor CD11b/CD18 endocytosis.Chvojková, Věra January 2012 (has links)
Bordetella pertussis is an important human pathogen that causes an infection disease called whooping cough. This gram-negative bacterium produces an adenylate cyclase toxin (CyaA) that recognizes an integrin receptor CD11b/CD18 present on the surface of myeloid phagocytes and delivers an adenylate cyclase (AC) domain into the cell cytosol. This thesis deals with the endocytic machinery of CyaA and its potential use as a specific marker for endocytosis of the CD11b/CD18 receptor molecule. Detoxified mutant of CyaA, CyaA-AC- , that has the capacity to promote calcium influx as well the potassium efflux, was shown to trigger activation of the integrin receptor CD11b/CD18 followed with endocytic uptake by clathrin-dependent pathway. On the other side, the inactive mutant CyaA-KP-AC- that is unable to provoke integrin activation was endocytosed by clathrin-independent pathway. These results suggest that the various endocytic pathways of the CD11b/CD18 are determined by different conformational states of the receptor molecule.
|
Page generated in 0.0771 seconds