• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 5
  • 4
  • 1
  • Tagged with
  • 49
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and functional analysis of the N-terminal domain of the Streptococcus gordonii adhesin Sgo0707

Nylander, Åsa, Svensäter, Gunnel, Senadheera, Dilani B., Cvitkovitch, Dennis G., Davies, Julia R., Persson, Karina January 2013 (has links)
The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
2

Bacterial Adhesin Proteins Associated with Microbial Flocs and EPS in the Activated Sludge

Brei, Elena 19 January 2012 (has links)
Microbial flocculation is important in wastewater treatment process for an efficient separation of the solid and liquid phases and the removal of organics. Bacterial adhesins may contribute to the formation of microbial flocs since they have been previously found to play a significant role in the formation of biofilms. The overall objective of this work was to analyze bacterial protein adhesins present in the extracellular polymeric substances (EPS), mainly those associated with pili, fimbriae, flagella, and curli, and to determine their role in microbial floc structure and function. Identification of these EPS adhesins may explain their role in biofouling and enhance our understanding regarding the manipulation of bioflocculation. With the exception of flagellin protein FliC, which was distributed towards the outer region of the floc, all the adhesins appeared to be concentrated within the core region of the floc. Antibody staining coupled with confocal microscopy indicated that adhesin proteins associated with flagella (FliC), pili (PilA), fimbriae (FimH), and curli (CsgA, CsgB) represent a significant fraction (10-27%) within microbial flocs. Western blot analyses demonstrated that with the exception of FliC, all the studied adhesins were detected in the EPS matrix. Furthermore, mass spectrometry indicated the presence of pili in the EPS matrix. Under Phosphorus (P)-limited conditions, with the exception of fliC, all the studied genes (fimH, pilO, psiF) exhibited a change in response to P reduction, with fimH gene at the highest expression and an earliest response (1 d). During the nutritional downshift analyses, fimH and pilO genes were expressed within the first six hours of the reaction at significantly greater levels than during P-limited conditions. Taken together, these studies suggest that adhesins associated with pili, fimbriae, and curli play an important role in initial floc formation, and that adhesins associated with flagella either recruit planktonic bacteria to a growing floc or are involved in the interfacial relationships at the floc surface. This information may assist researchers and engineers in broadening the understanding of bioflocculation in conventional biologically based wastewater treatment systems and in advanced technologies, such as hybrid and membrane bioreactors. In addition, this knowledge will be useful in creating molecular tools to aid in the design and monitoring of bioflocculation.
3

Bacterial Adhesin Proteins Associated with Microbial Flocs and EPS in the Activated Sludge

Brei, Elena 19 January 2012 (has links)
Microbial flocculation is important in wastewater treatment process for an efficient separation of the solid and liquid phases and the removal of organics. Bacterial adhesins may contribute to the formation of microbial flocs since they have been previously found to play a significant role in the formation of biofilms. The overall objective of this work was to analyze bacterial protein adhesins present in the extracellular polymeric substances (EPS), mainly those associated with pili, fimbriae, flagella, and curli, and to determine their role in microbial floc structure and function. Identification of these EPS adhesins may explain their role in biofouling and enhance our understanding regarding the manipulation of bioflocculation. With the exception of flagellin protein FliC, which was distributed towards the outer region of the floc, all the adhesins appeared to be concentrated within the core region of the floc. Antibody staining coupled with confocal microscopy indicated that adhesin proteins associated with flagella (FliC), pili (PilA), fimbriae (FimH), and curli (CsgA, CsgB) represent a significant fraction (10-27%) within microbial flocs. Western blot analyses demonstrated that with the exception of FliC, all the studied adhesins were detected in the EPS matrix. Furthermore, mass spectrometry indicated the presence of pili in the EPS matrix. Under Phosphorus (P)-limited conditions, with the exception of fliC, all the studied genes (fimH, pilO, psiF) exhibited a change in response to P reduction, with fimH gene at the highest expression and an earliest response (1 d). During the nutritional downshift analyses, fimH and pilO genes were expressed within the first six hours of the reaction at significantly greater levels than during P-limited conditions. Taken together, these studies suggest that adhesins associated with pili, fimbriae, and curli play an important role in initial floc formation, and that adhesins associated with flagella either recruit planktonic bacteria to a growing floc or are involved in the interfacial relationships at the floc surface. This information may assist researchers and engineers in broadening the understanding of bioflocculation in conventional biologically based wastewater treatment systems and in advanced technologies, such as hybrid and membrane bioreactors. In addition, this knowledge will be useful in creating molecular tools to aid in the design and monitoring of bioflocculation.
4

A Tale of Two Proteins: Insights into the Haemophilus influenzae Hap and Hia Autotransporters

Spahich, Nicole Ann January 2011 (has links)
<p>Nontypeable Haemophilus influenzae (NTHi) is a common commensal in the human nasopharynx that can cause localized respiratory tract diseases such as otitis media, bronchitis, and pneumonia. NTHi adheres to respiratory epithelial cells, a critical step in the process of colonization enabled by bacterial surface adhesive structures called adhesins. One group of NTHi adhesins are autotransporters, proteins that have an N-terminal signal sequence, a C-terminal &#946;-barrel domain, and an internal passenger domain with effector function. The goal of this work was to increase our understanding of two NTHi autotransporters, Hap and Hia.</p><p>Hap is a monomeric autotransporter that mediates adherence to epithelial cells and extracellular matrix (ECM) proteins. Hap also self-associates with protein on neighboring bacteria, resulting in bacterial aggregation and microcolony formation. The Hap passenger domain contains the regions responsible for adhesive activity. To define the molecular mechanism of Hap adhesive activity, we crystallized the Hap passenger domain. Characterization of the crystal structure revealed an N-terminal globular domain and a more ordered, prism-like C-terminal domain. Interestingly, Hap crystallized as a multimer, suggesting that Hap-Hap interactions occurred in the passenger domain. Progressive deletions of the &#946;-loops that comprise the C-terminal region disrupted Hap-Hap interactions and led to a defect in bacterial settling. To further support that the C-terminal domain was responsible for Hap-Hap interactions,</p><p>7</p><p>we purified the wild type and truncated passenger domains and conjugated the proteins to latex beads. By light microscopy we visualized bead aggregation when the wild type passenger domain was conjugated to the beads, but not when the truncated passenger domain was conjugated. These results show that the C-terminal portion of the Hap passenger domain is responsible for Hap-Hap interactions leading to multimerization. Hap multimerization could be important in microcolony formation that leads to biofilm formation in vivo.</p><p>The ECM binding domain in located in the final 511 amino acids of the Hap passenger domain. To pin-point the region of the ECM protein fibronectin that is recognized by Hap, we spotted small fragments of fibronectin onto nitrocellulose membranes and incubated the membrane with purified Hap passenger domain. Far Western analysis using Hap antibody revealed that the smallest fibronectin region necessary for binding was comprised of the first two type III repeats, FNIII(1-2). To define the regions of Hap responsible for interaction with fibronectin, we mutated motifs in the Hap passenger domain that are important for fibronectin binding in other bacterial proteins. Based on assessment by ELISA, many of the mutations located between amino acids 525-725 caused reduced bacterial binding to fibronectin. However, no mutation totally ablated binding, suggesting that a larger Hap region is involved in fibronectin binding.</p><p>8</p><p>In an additional study, we identified a relationship between Hap levels in the outer membrane and the expression of lipopolysaccharide (LPS) biosynthesis enzymes. Through Western and qPCR analysis, we found that mutation of the rfaF, pgmB, lgtC, kfiC, orfE, rfbP, lsgB and lsgD genes involved in the synthesis of LPS oligosaccharide core in H. influenzae strain Rd/HapS243A resulted in loss of Hap in the bacterial outer membrane and a decrease in hap transcript. In contrast, the same mutations had no effect on outer membrane localization of H. influenzae P5 and IgA1 protease or levels of the p5 or iga1 transcripts, suggesting a Hap-specific effect. Elimination of the HtrA periplasmic protease resulted in a return of Hap to the outer membrane and restoration of wild type levels of hap transcript. We speculate that the lack of certain LPS biosynthesis enzymes causes Hap to mislocalize and accumulate in the periplasm, where it is degraded by HtrA. This degradation then leads to a decrease in hap transcript. lgtC is one of several phase variable LPS biosynthesis genes. Using an antibody against the epitope formed in part by the lgtC gene product, we identified lgtC phase-off bacteria by Western analysis of colony blots. Consistent with our previous observations, in lgtC phase off bacteria Hap was absent from the outer membrane and hap transcript was reduced. By analyzing a lgtC/lic2A double mutant, we found that Hap localization in the outer membrane and hap transcript levels were not related to LPS size but instead to the functions of the LPS synthesis enzymes themselves. This relationship could be beneficial to bacteria in vivo as a way to regulate Hap expression.</p><p>9</p><p>Early models suggested that autotransporters do not require accessory factors for folding and OM insertion. However, mounting recent evidence has suggested that the Bam complex is required for OM localization of most &#946;-barrel proteins, including autotransporters. We studied the role of the Bam complex in OM localization of the trimeric autotransporter Hia. We expressed Hia in E. coli strains with mutations in the Bam complex and found that BamA and BamD were needed for Hia localization, while BamB, BamC, and BamE were not necessary. In further studies, we mutated the C-terminus of Hia and found that the final and third-to-last amino acids were the most important for outer membrane localization.</p><p>In summary, this work provides insights into the regulation and adhesive activity of Hap and the outer membrane localization of Hia. We have learned important details about these factors that shed light on aspects of H. influenzae disease and could lead to new antimicrobial therapies.</p> / Dissertation
5

Biochemical Characterization of Escherichia coli PgaB, an Enzyme Essential for Biofilm Formation

Poloczek, Joanna 19 June 2014 (has links)
The formation of bacterial biofilms requires an extracellular matrix to facilitate adherence of bacteria to the surface they colonize. Carbohydrate polymers, known as exopolysaccharides, form a key component of most biofilm matrices. A wide variety of medically-important biofilm forming bacterial strains, including S. epidermidis, S. aureus, E. coli, B. pertussis, and Y. pestis generate the same β-1,6-N-acetyl glucosamine (PNAG) homopolymer as a key biofilm matrix exopolysaccharide. In E. coli, as well as in the other bacterial strains, the PNAG undergoes partial enzymatic de-N-acetylation, which is essential for surface attachment and subsequent biofilm formation. In vivo studies implied that the enzyme responsible for carrying out de-N-acetylation in E. coli is PgaB, an enzyme with sequence homologues in many Gram negative species capable of forming biofilms. In this work, the first biochemical characterization of PgaB is presented. We confirmed the activity of PgaB on β-1,6-GlcNAc oligosaccharides. The activity of PgaB is specific for the β-1,6 linkage and no de-N-acetylation of β-1,4-GlcNAc oligosaccharides was detected. Enzyme activity is dependent on the degree of substrate polymerization, as the second order rate constant for pentasaccharide substrate was determined to be four times higher than that of the tetrasaccharide substrate. Oligosaccharide sequencing studies indicate that there may be a pattern in the de-N-acetylation of substrates by PgaB. The central residue is modified in mono-de-N-acetylated pentasaccharide substrate, while di-de-N-acetylated hexasaccharide substrate shows modification mainly at the third and fifth residues from the non-reducing terminus of the substrate. Activity studies revealed that PgaB is activated by Ni2+ as well as by Fe2+, which is uncommon for deacetylase enzymes. Metal coordination to active site residues His184 and His189 was confirmed by mutagenesis studies, which also indicated that the metal likely plays a catalytic role. The results of these metal dependence studies support the observed binding of nickel and iron to the active site in PgaB crystal structures. The characterization studies presented in this thesis allow us to gain a better understanding of the de-N-acetylation aspect of the PNAG biosynthetic process and will serve as a basis for enzyme inhibitor design.
6

Biochemical Characterization of Escherichia coli PgaB, an Enzyme Essential for Biofilm Formation

Poloczek, Joanna 19 June 2014 (has links)
The formation of bacterial biofilms requires an extracellular matrix to facilitate adherence of bacteria to the surface they colonize. Carbohydrate polymers, known as exopolysaccharides, form a key component of most biofilm matrices. A wide variety of medically-important biofilm forming bacterial strains, including S. epidermidis, S. aureus, E. coli, B. pertussis, and Y. pestis generate the same β-1,6-N-acetyl glucosamine (PNAG) homopolymer as a key biofilm matrix exopolysaccharide. In E. coli, as well as in the other bacterial strains, the PNAG undergoes partial enzymatic de-N-acetylation, which is essential for surface attachment and subsequent biofilm formation. In vivo studies implied that the enzyme responsible for carrying out de-N-acetylation in E. coli is PgaB, an enzyme with sequence homologues in many Gram negative species capable of forming biofilms. In this work, the first biochemical characterization of PgaB is presented. We confirmed the activity of PgaB on β-1,6-GlcNAc oligosaccharides. The activity of PgaB is specific for the β-1,6 linkage and no de-N-acetylation of β-1,4-GlcNAc oligosaccharides was detected. Enzyme activity is dependent on the degree of substrate polymerization, as the second order rate constant for pentasaccharide substrate was determined to be four times higher than that of the tetrasaccharide substrate. Oligosaccharide sequencing studies indicate that there may be a pattern in the de-N-acetylation of substrates by PgaB. The central residue is modified in mono-de-N-acetylated pentasaccharide substrate, while di-de-N-acetylated hexasaccharide substrate shows modification mainly at the third and fifth residues from the non-reducing terminus of the substrate. Activity studies revealed that PgaB is activated by Ni2+ as well as by Fe2+, which is uncommon for deacetylase enzymes. Metal coordination to active site residues His184 and His189 was confirmed by mutagenesis studies, which also indicated that the metal likely plays a catalytic role. The results of these metal dependence studies support the observed binding of nickel and iron to the active site in PgaB crystal structures. The characterization studies presented in this thesis allow us to gain a better understanding of the de-N-acetylation aspect of the PNAG biosynthetic process and will serve as a basis for enzyme inhibitor design.
7

Nested PCR for distinguishing Haemophilus haemolyticus from Haemophilus influenzae and Cloning and expression of fragmented Moraxella catarrhalis IgD-binding protein in E. coli

Bergström, Jennie January 2007 (has links)
<p>ABSTRACT</p><p>Nontypable Haemophilus influenzae is a common cause of otitis, sinusitis and conjunctivitis. It is the most common bacterial pathogen associated with chronic obstructive pulmonary disease (COPD). Studies have shown that nonpathogenic Haemophilus haemolyticus are often mistaken for Haemophilus influenzae due to an absent hemolytic reaction on blood agar. Distinguishing H. haemolyticus from H. influenzae is important to prevent unnecessary antibiotic use, and to understand the role of H. influenzae in clinical infections. In this study, PCR-primers for amplifying 16S rDNA sequences were used to set up a method for distinguishing H. haemolyticus from H. influenzae. The aim was to use the method for analyzing apparent H. influenzae strains, to investigate if some strains were in fact H. haemolyticus. However, because of problems with unspecific primerannealing,no conclusions could be drawn regarding misclassification of H. haemolyticus.</p><p>Moraxella catarrhalis is the second most common bacterial pathogen associated with COPD. It also causes otitis and sinusitis. An important virulence factor of M. catarrhalis is the outer membrane protein Moraxella catarrhalis IgD-binding protein (MID). One part of the protein; MID764-913 , has been shown to function as an adhesin, and this part has been fragmented to further investigate its adhesive properties. The aim of this second, independent study, was to express some of these proteinfragments by cloning in E. coli. The time spent on this project was too short, and no proteins could be expressed duing this period.</p>
8

Analysis of the Streptococcal Hemoprotein Receptor: A Role in Virulence and Host Defense

Huang, Ya-Shu 01 May 2012 (has links)
Group A streptococcus (GAS) is an important pathogen that produces a wide spectrum of suppurative infections and autoimmune sequelae in humans, ranging from less complex pharyngitis, impedigo to more severe manifestations such as necrotizing fasciitis, toxic shock syndrome, rheumatic fever and glomerulonephritis. The worldwide burden of GAS infections and sequelae is considerable, but an immunization program that defends against the hyper-variable GAS is missing. The streptococcal hemoprotein receptor (Shr), is an iron-regulated protein involved in heme acquisition. An unspecified region in the amino terminus of Shr mediates the interactions with hemoglobin and two protein modules named NEAT1 and NEAT2 bind heme. In this study, we analyzed the molecular structure and function of Shr, investigated its antigenic properties and role in GAS disease production. We demonstrated that Shr is a new type of GAS adhesin that contributes to the pathogen interactions with extracellular matrix (ECM) proteins. Shr enabled bacterial adherence to host cells and was important for GAS virulence in vivo. Immunizations with Shr protein by intraperitoneal or intranasal administration conferred resistance to systemic GAS challenge in mice. Shr antiserum allowed bacterial opsonization and defended against GAS diseases in a murine model for passive vaccination. Studies with isolated Shr domains localized ECM-binding to the NEAT domains and showed that most of the protein is exposed on the bacterial surface. In addition, Shr N-terminal region and both of the NEAT modules elicited strong antibody response in rabbits. In conclusion, Shr is a protective antigen that contributes to GAS pathogenesis by facilitating both heme uptake and bacterial adherence. Since Shr is conserved among GAS strains and other pyogenic streptococci, this study demonstrates that Shr may be used to develop a vaccine against GAS strains and related pathogens.
9

Caracterização da enolase de Paracoccidioides brasiliensis e identificação proteômica de novas moléculas

Marcos, Caroline Maria [UNESP] 05 July 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-07-05Bitstream added on 2014-06-13T20:35:40Z : No. of bitstreams: 1 marcos_cm_me_arafcf.pdf: 2508470 bytes, checksum: bc1a1f1c4040c405fe6c122e87b067ff (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / Paracoccidioides brasiliensis é um importante patógeno humano que causa a paracoccidioidomicose (PCM), uma micose sistêmica com ampla distribuição na América Latina. A adesão e invasão de células são eventos cruciais envolvidos na infecção e disseminação do patógeno. Além disso, patógenos utilizam suas moléculas de superfície para se ligar aos componentes da matriz extracelular para estabelecer a infecção. Uma proteína antigênica de P. brasiliensis foi isolada de géis de eletroforese bidimensional do cell-free do fungo e caracterizada. Peptídeos foram obtidos da proteína de 54 kDa e pI 5,6 e mostraram homologia com enolase de Paracoccidioides brasiliensis e outros fungos. A proteína foi purificada através de eletroeluição e utilizada para a produção de anticorpo policlonal em coelho. Por microscopia de fluorescência não foi possível observar a localização exata desta proteína, apenas que se encontra aparentemente distribuídapor todo o fungo, foi possível verificar alterações no citoesqueleto de pneumócitos durante a infecção por P. brasiliensis. A localização foi confirmada por microscopia imunoeletrônica a presença de enolase foi detectada principalmente na parede celular de leveduras de P. brasiliensis e também no citoplasma, ela se demonstrou mais expressa quando este fungo foi cultivado em meio onde houve acréscimo de sangue de carneiro e durante a situação de infecção a pneumócitos. A enolase purificada foi capaz de se ligar a fibronectina, fibrinogênio, laminina, plasminogênio, colágenos tipo I e IV. Foi confirmado que a ligação desta proteína à pneumócitos é influenciada pela sequência de aminoácidos Arg-Gly-Asp contida provavelmente nos receptores da matriz extracelular presentes na célula do hospedeiro. Essas informações indicam que a enolase possivelmente contribui para a adesão do microrganismo aos tecidos do... / Paracoccidioides brasiliensis is an important human pathogen that causes paracoccidioidomycosis (PCM), a systemic mycosis with a wide distribution in Latin America. The ability of P. brasiliensis to cause not only human diseases but also mycoses with a variety of clinical manifestations from localized forms to the disseminated disease progressing to lethality, probably depends on the relationship between the virulence of the fungus, its ability to interact with and to invade the surface structures of the host and the immune response of the host. The adhesion of the pathogen leads to the recognition of carbohydrate and protein ligands on the surface of the host cell or proteins of the extracellular matrix (ECM). The large number of tissue types that fungi can colonize and infect suggests that they use a variety of surface molecules for adhesion.Understanding the interactions between P. brasiliensis and the host tissue depends on the study of the different steps of the process of colonization, especially adhesion, in which the pathogen recognizes ligands on the surface of host cells. This study aimed to verify the role of enolase in the host cell-fungus interaction and the ability of enolase to bind to extracellular matrix components, to determine its subcellular localization. The data revealed that fibronectin is the major ligand of enolase. Evaluation of the location of enolase at an ultrastructural level revealed that it is distributed in various cellular compartments, but at a high level in the cell wall. This suggests that enolase performs additional functions related to the glycolytic pathway and also plays a role of adhesion in P. brasiliensis. Therefore, this study increases the knowledge about the characteristics of enolase and its influence on the binding process of P. brasiliensis
10

Characterization of minor pilins in Pseudomonas aeruginosa

Giltner, Carmen January 2010 (has links)
<P> Type II Secretion (T2S) and type IV pilus (T4P) systems in Gram-negative bacteria share many features that suggest a common ancestral origin. This study examined the role of the minor pilins FimU, PilV, PilW, PilX and PilE, as well as the putative adhesin PilYl in both the T4P and T2S systems, and elucidated the role of these proteins in pilus assembly. Genetic analysis of the major pilin cluster and the minor pilin operon revealed that the major pilin alleles are associated with a specific set of minor pilins, and that unrelated strains of the same major pilin type have identical minor pilin genes, suggesting that the two gene clusters were horizontally acquired as a 'pilin island'. We observed that the minor pilins required a specific stoichiometric ratio for proper assembly, as overexpression either completely abolished, or significantly reduced twitching motility in mutant backgrounds. We demonstrated that the minor pilins were incorporated into the pilus fibre, and that they were dependent on PilA for surface localization. The T4P minor pilins were also shown to play a role in the secretion of effectors through the T2S system, as elastase and haemolytic phospholipase C secretion was reduced in minor pilin mutants, while overexpression of FimU or PilX significantly increased secretion of T2S exoproteins. Therefore, the minor pilins may participate in T2S substrate recognition. We found that PilYl was not essential for assembly in the absence of retraction, but that its absence caused changes in the levels of other T4P biogenesis proteins, namely FimU, PilW, PilF and PilQ secretin multimers. Finally we show that the minor pilin, PilX functions as a strain-specific factor, potentially through specific interactions with non-conserved residues of PilQ that are necessary to induce opening of the secretin. </p> / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.037 seconds