1 |
Infinite dimensional versions of the Schur-Horn theoremJasper, John, 1981- 06 1900 (has links)
ix, 99 p. / We characterize the diagonals of four classes of self-adjoint operators on infinite dimensional Hilbert spaces. These results are motivated by the classical Schur-Horn theorem, which characterizes the diagonals of self-adjoint matrices on finite dimensional Hilbert spaces.
In Chapters II and III we present some known results. First, we generalize the Schur-Horn theorem to finite rank operators. Next, we state Kadison's theorem, which gives a simple necessary and sufficient condition for a sequence to be the diagonal of a projection. We present a new constructive proof of the sufficiency direction of Kadison's theorem, which is referred to as the Carpenter's Theorem.
Our first original Schur-Horn type theorem is presented in Chapter IV. We look at operators with three points in the spectrum and obtain a characterization of the diagonals analogous to Kadison's result.
In the final two chapters we investigate a Schur-Horn type problem motivated by a problem in frame theory. In Chapter V we look at the connection between frames and diagonals of locally invertible operators. Finally, in Chapter VI we give a characterization of the diagonals of locally invertible operators, which in turn gives a characterization of the sequences which arise as the norms of frames with specified frame bounds.
This dissertation includes previously published co-authored material. / Committee in charge: Marcin Bownik, Chair;
N. Christopher Phillips, Member;
Yuan Xu, Member;
David Levin, Member;
Dietrich Belitz, Outside Member
|
2 |
Singularidades quânticas / Quantum singularitiesManoel, João Paulo Pitelli, 1982- 18 August 2018 (has links)
Orientador: Patricio Anibal Letelier Sotomayor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T20:03:53Z (GMT). No. of bitstreams: 1
Manoel_JoaoPauloPitelli_D.pdf: 2670867 bytes, checksum: 990119329fe5abbf22d8a42384ff3e72 (MD5)
Previous issue date: 2011 / Resumo: Espaços-tempo classicamente singulares serão estudados de um ponto de vista quântico. A utilização da mecânica quântica será feita de duas maneiras. A primeira consiste em encontrar a função de onda do Universo, resolvendo a equação de Wheeler-DeWitt para as variáveis canônicas do espaço-tempo. A segunda consiste em acoplar conformemente campos escalares e spinoriais ao campo gravitacional, estudando o comportamento de pacotes de ondas neste espaço-tempo curvo / Abstract: Classically singular spacetimes will be studied from a quantum mechanical point of view. The use of quantum mechanics will be handled in two different ways. The first consists in finding the wave function of the universe by solving the Wheeler-DeWitt equation for the canonical variables of spacetime. The second is through the conformal coupling of scalar and spinorial fields with the gravitational field, where we will study the behavior of wave packets in this curved spacetime / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
3 |
Singularidades quanticas associadas a defeitos topologicos em espaços-tempos classicamente singulares / Quantum singularities associated to topological defects in classically singular spacetimesManoel, João Paulo Pitelli, 1982- 28 March 2008 (has links)
Orientador: Patricio Anibal Letelier Sotomayor / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T23:13:00Z (GMT). No. of bitstreams: 1
Manoel_JoaoPauloPitelli_M.pdf: 2107794 bytes, checksum: 5fe60d22c5d7bd4e165a24c4c9c6d375 (MD5)
Previous issue date: 2008 / Resumo: Espaços-tempos classicamente singulares são estudados utilizando-se partículas quânticas (ao invés de clássicas) obedecendo as equações de Klein-Gordon e Dirac, a fim de determinar se estes espaços permanecem singulares do ponto de vista quântico. Primeiramente é apresentada uma revisão do ferramental matemático necessário para o estudo de singularidades quânticas, cujo principal resultado utilizado é a teoria de índices deficientes devido a von Neumann. No apêndice A é apresentado um primeiro estudo sobre singularidades quânticas em espaços-tempos com defeitos topológicos numa superfície 2-dimensional (paredes cósmicas), em especial superfícies esféricas e cilíndricas. Estes espaços continuam singulares nesta teoria e todas as informações extras (que em mecânica quântica se apresentam sob a forma de condições de contorno) necessárias para se remover a singularidade são encontradas. No apêndice B, é estudado um espaço-tempo 2+1 dimensional com curvatura negativa constante. É mostrado que este espaço permanece singular quando visto pela mecânica quântica e as condições de contorno possíveis são encontradas utilizando-se resultados obtidos no caso plano / Abstract: Classical singular spacetimes are studied using quantum particles (instead of classical ones) obeying Klein-Gordon and Dirac equations, to determine if these spacetimes remain singular in the view of quantum mechanics. First we give a review of the mathematical framework necessary to study quantum singularities, wich the main result to be used later is von Neumann¿s theory of deficient indices. In appendix A, a first work on quantum singularities in spacetimes with topological defects on a 2-dimensional hypersurface (cosmic walls), specifically spherical and cylindrical surfaces, is presented. These spacetimes remain singular in this theory and all extra informations (which in quantum mechanics correspond to boundary conditions) necessary to remove the naked singularity are found. In Apendix B, a 2+1 dimensional spacetime with constant negative curvature is studied. It is shown that this spacetime remains quantum mechanically singular and all possible boundary conditions are found using results obtained in plane case / Mestrado / Relatividade Geral/Gravitação Quantica / Mestre em Matemática Aplicada
|
4 |
Propriétés spectrales des opérateurs non-auto-adjoints aléatoires / Spectral properties of random non-self-adjoint operatorsVogel, Martin 10 September 2015 (has links)
Dans cette thèse, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-adjoints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléatoires de deux types des opérateurs non-auto-adjoints suivants :1. une classe d’opérateurs non-auto-adjoints h-différentiels Ph, introduite par M. Hager [32],dans la limite semiclassique (h→0); 2. des grandes matrices de Jordan quand la dimension devient grande (N→∞). Dans le premier cas nous considérons l’opérateur Ph soumis à de petites perturbations aléatoires. De plus, nous imposons que la constante de couplage δ vérifie e (-1/Ch) ≤ δ ⩽ h(k), pour certaines constantes C, k > 0 choisies assez grandes. Soit ∑ l’adhérence de l’image du symbole principal de Ph. De précédents résultats par M. Hager [32], W. Bordeaux-Montrieux [4] et J. Sjöstrand [67] montrent que, pour le même opérateur, si l’on choisit δ ⪢ e(-1/Ch), alors la distribution des valeurs propres est donnée par une loi de Weyl jusqu’à une distance ⪢ (-h ln δ h) 2/3 du bord de ∑. Nous étudions la mesure d’intensité à un et à deux points de la mesure de comptage aléatoire des valeurs propres de l’opérateur perturbé. En outre, nous démontrons des formules h-asymptotiques pour les densités par rapport à la mesure de Lebesgue de ces mesures qui décrivent le comportement d’un seul et de deux points du spectre dans ∑. En étudiant la densité de la mesure d’intensité à un point, nous prouvons qu’il y a une loi de Weyl à l’intérieur du pseudospectre,une zone d’accumulation des valeurs propres dûe à un effet tunnel près du bord du pseudospectre suivi par une zone où la densité décroît rapidement. En étudiant la densité de la mesure d’intensité à deux points, nous prouvons que deux valeurs propres sont répulsives à distance courte et indépendantes à grande distance à l’intérieur de ∑. Dans le deuxième cas, nous considérons des grands blocs de Jordan soumis à des petites perturbations aléatoires gaussiennes. Un résultat de E.B. Davies et M. Hager [16] montre que lorsque la dimension de la matrice devient grande, alors avec probabilité proche de 1, la plupart des valeurs propres sont proches d’un cercle. De plus, ils donnent une majoration logarithmique du nombre de valeurs propres à l’intérieur de ce cercle. Nous étudions la répartition moyenne des valeurs propres à l’intérieur de ce cercle et nous en donnons une description asymptotique précise. En outre, nous démontrons que le terme principal de la densité est donné par la densité par rapport à la mesure de Lebesgue de la forme volume induite par la métrique de Poincaré sur la disque D(0, 1). / In this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1).
|
5 |
Observation et commande de quelques systèmes à paramètres distribués / Observation and control of some distributed parameter systemsLi, Xiaodong 09 December 2009 (has links)
L’objectif principal de cette thèse consiste à étudier plusieurs thématiques : l’étude de l’observation et la commande d’un système de structure flexible et l’étude de la stabilité asymptotique d’un système d’échangeurs thermiques. Ce travail s’inscrit dans le domaine du contrôle des systèmes décrits par des équations aux dérivées partielles (EDP). On s’intéresse au système du corps-poutre en rotation dont la dynamique est physiquement non mesurable. On présente un observateur du type Luenberger de dimension infinie exponentiellement convergent afin d’estimer les variables d’état. L’observateur est valable pour une vitesse angulaire en temps variant autour d’une constante. La vitesse de convergence de l’observateur peut être accélérée en tenant compte d’une seconde étape de conception. La contribution principale de ce travail consiste à construire un simulateur fiable basé sur la méthode des éléments finis. Une étude numérique est effectuée pour le système avec la vitesse angulaire constante ou variante en fonction du temps. L’influence du choix de gain est examinée sur la vitesse de convergence de l’observateur. La robustesse de l’observateur est testée face à la mesure corrompue par du bruit. En mettant en cascade notre observateur et une loi de commande stabilisante par retour d’état, on souhaite obtenir une stabilisation globale du système. Des résultats numériques pertinents permettent de conjecturer la stabilité asymptotique du système en boucle fermée. Dans la seconde partie, l’étude est effectuée sur la stabilité exponentielle des systèmes d’échangeurs thermiques avec diffusion et sans diffusion. On établit la stabilité exponentielle du modèle avec diffusion dans un espace de Banach. Le taux de décroissance optimal du système est calculé pour le modèle avec diffusion. On prouve la stabilité exponentielle dans l’espace Lp pour le modèle sans diffusion. Le taux de décroissance n’est pas encore explicité dans ce dernier cas. / The main objective of this thesis consists to investigate the following themes : observation and control of a flexible structure system and asymptotic stability of a heat exchangers system. This work is placed in the field of the control of systems described by partial differential equations (PDEs). We consider a rotating body-beam system whose dynamics are not physically measurable. An infinite-dimensional exponentially convergent Luenberger-like observer is presented in order to estimate the state variables. The observer is also valid for a time-varying angular velocity around some constant. We can accelerate the decay rate of the observer by a second step design. The main contribution of this work consists in building a numerical simulator based on the finite element method (FEM). A numerical investigation is carried out for the system with constant or time-varying angular velocity. We examine the influence of the gain choice on the decay rate of the observer. The robustness of the observer is tested with the measurement corrupted by noise. By cascading our observer and a feedback control law, we wish to obtain a global stabilization of the rotating bodybeam system. The relevant numerical results make it possible for us to conjecture that the closed-loop system is locally asymptotically stable. We investigate the exponential stability of the heat exchangers systems with diffusion or without diffusion. We establish the exponential stability of the model with diffusion in a Banach space. Moreover, the optimal decay rate of the system is computed for the model with diffusion. We prove exponential stability in (C[0, 1])4 space for the model without diffusion. The optimal decay rate in the latter case is not yet found.
|
Page generated in 0.0748 seconds