• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes

Unknown Date (has links)
We develop novel numerical methods for optimization problems subject to constraints given by nonlinear hyperbolic systems of conservation and balance laws in one space dimension. These types of control problems arise in a variety of applications, in which inverse problems for the corresponding initial value problems are to be solved. The optimization method can be seen as a block Gauss-Seidel iteration. The optimization requires one to numerically solve the hyperbolic system forward in time and the corresponding linear adjoint system backward in time. We test the optimization method on a number of control problems constrained by nonlinear hyperbolic systems of PDEs with both smooth and discontinuous prescribed terminal states. The theoretical foundation of the introduced scheme is provided in the case of scalar hyperbolic conservation laws on an unbounded domain with a strictly convex flux. In addition, we empirically demonstrate that using a higher-order temporal discretization helps to substantially improve both the efficiency and accuracy of the overall numerical method. / acase@tulane.edu
2

Periodic Solutions And Stability Of Linear Impulsive Delay Differential Equations

Alzabut, Jehad 01 April 2004 (has links) (PDF)
In this thesis, we investigate impulsive differential systems with delays of the form And more generally of the form The dissertation consists of five chapters. The first chapter serves as introduction, contains preliminary considerations and assertions that will be encountered in the sequel. In chapter 2, we construct the adjoint systems and obtain the variation of parameters formulas of the solutions in terms of fundamental matrices. The asymptotic behavior of solutions of systems satisfying the Perron condition is investigated in chapter 3. In chapter4, we give a result that characterizes the behavior of solutions in the case there is a bounded solution. Moreover, a necessary and sufficient condition for the existence of periodic solutions is obtained. In the last chapter, a series of consequences on the existence of periodic solutions of functionally equivlent impulsive systems with delays is established.
3

OPTIMAL GEOMETRY IN A SIMPLE MODEL OF TWO-DIMENSIONAL HEAT TRANSFER

Peng, Xiaohui 10 1900 (has links)
<p>This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems used in hybrid/electric vehicles. We consider a simple model of two-dimensional steady-state heat conduction generated by a prescribed distribution of heat sources and involving a one-dimensional cooling element represented by a closed contour. The problem consists in finding an optimal shape of the cooling element which will ensure that the temperature in a given region is close (in the least squares sense) to some prescribed distribution. We formulate this problem as PDE-constrained optimization and use methods of the shape-differential calculus to obtain the first-order optimality conditions characterizing the locally optimal shapes of the contour. These optimal shapes are then found numerically using the conjugate gradient method where the shape gradients are conveniently computed based on adjoint equations. A number of computational aspects of the proposed approach is discussed and optimization results obtained in several test problems are presented.</p> / Master of Science (MSc)
4

Simulation et optimisation de procédés d'adsorption modulée en pression : formulation et résolution à l'aide de l'optimisation dynamique hybride / Simulation and optimisation of process swing adsorption processes : a hybrid dynamic optimisation approach

Ayoub, Shahid 26 March 2010 (has links)
Dans ce travail, une approche d’optimisation dynamique hybride est développée et utilisée pour simuler et optimiser les procédés d’adsorption modulée en pression (PSA). Elle est principalement basée sur la formulation hybride du modèle du procédé et sur l’utilisation de la méthode du système adjoint.Le problème de simulation qui consiste à déterminer le régime stationnaire cyclique (CSS) est formulé comme un problème d’optimisation où le critère de performance est défini par la condition de CSS, les variables de décision sont données par les valeurs initiales des variables d’état, et les contraintes par le modèle hybride du procédé avec les conditions aux limites associées. En optimisation, le vecteur des variables de décision contient, en plus des valeurs initiales de l’état, les paramètres de dimensionnement et de fonctionnement. La condition de CSS devient, dans ce cas, une contrainte à satisfaire par chaque solution optimale. Plusieurs modèles de procédés, allant du plus simple au plus compliqué, sont ´étudiés.Il s’agit notamment de procédés isothermes et non isothermes avec et sans états gelés. Les critères de performance considérés sont la pureté, la récupération et l´énergie. Les résultats obtenus aussi bien au niveau des performances des procédés considérés que de la robustesse de l’algorithme d’optimisation mis en œuvre, sont tout `a fait intéressants et montrent le grand potentiel de l’approche développée pour le dimensionnement et le fonctionnement optimaux des procédés PSA / The objective of the work was to develop a hybrid dynamic optimisation approach for simulation and optimisation of pressure swing adsorption (PSA) processes. It is mainly based on the hybrid formulation of the process model and on the use of adjoint system method. The simulation problem which consists in determining the cyclic steady state (CSS) is formulated as an optimisation problem where the CSS condition is considered as the performance index, initial values of state variables as decision variables and process model along with associated conditions as constraints. In optimisation, the decision vector consists of design and operation parameters in addition to the initials values of state variables whereas the CSS condition is considered in this case as a constraint to be satisfied for each optimal solution. Several process models with a varied degree of complexity have been studied. These models are isothermal and non isothermal with and without frozen states. The performance index considered are purity, recovery and energy. The results obtained are interesting vis-a-vis the performance of the processes considered as well as the robustness of the optimisation algorithm and show the great potential of the approach developed for the optimal design and operation of PSA processes

Page generated in 0.0396 seconds