• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • Tagged with
  • 23
  • 23
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Equações de advecção-difusão com aplicações às equações de Navier-Stokes

Schütz, Lineia January 2008 (has links)
Este trabalho consiste de duas partes. Na primeira, estendemos o resultado de Braz e Silva e Zingano [2], [3] sobre soluções u(•; t) ε C°([0; T[;Lp(Rn)) de equações de advecção-difusão em meios heterogêneos para classes mais gerais de equações parabólicas, aplicando os resultados nas equações de Navier-Stokes incompressíveis no plano formuladas em termos da vorticidade do escoamento. Em particular, estabelecemos estimativas mostrando o decaimento em certas normas do campo de velocidade u(•; t) em caso de escoamentos de energia infinita. Na segunda parte, consideramos as equações de Navier-Stokes em dimensão n = 2; 3 examinando soluções u(•; t) de energia finita. Inicialmente, obtemos uma nova derivação, mais simples, do resultado obtido originalmente por Kato [20] estabelecendo o decaimento assintótico (t → ∞) de ||u(•; t)||L²(Rn), para estados iniciais u0 ε H¹(Rn) (com divergente nulo) arbitrários. Na linha deste argumento obtemos uma formula»c~ao mais forte dos resultados fundamentais de Wiegner [36] relacionando u(•; t) com soluções evΔtu0 da equação do calor, adaptando o método recentemente introduzido em [22], [23] para a derivação destes resultados. O método de [22], [23] também é utilizado para estabelecermos (dimensão n=3) que, ocorrendo "blow- up"de u(•; t) em tempo finito t*, necessariamente t* < 0:159||u0||4Lp(Rn)º-5, sendo ν a viscosidade dinãmica do escoamento. / In the first part of the this work, we extend results by Braz e Silva e Zingano [2], [3] concerning Lp solutions u(•; t) ε C°([0; T[;Lp(Rn)) of advection-dicusion equations in heterogeneous media to broader classes of quasilinear parabolic equations, applying the results to incompressible Navier-Stokes flows in the plane by way of the vorticity formulation. In particular, we obtain some decay rates (as t → ∞) for certain norms of the velocity field u(•; t) in case of flow with infinity energy. In the second part, we consider the Navier-Stokes equations in dimension n = 2; 3 and examine solutions u(•; t) with finite energy. First, we give a new (and simpler) derivation of the time asymptotic result originally obtained by Kato [20] and Masuda [28] showing the decay of the L2 norm of divergence-free, finite- energy solutions. Following these footsteps, we give a stronger formulation of the fundamental results obtained by Wiegner [36] relating the velocity field u(•; t) to solutions evΔtu0 of the heat equation, adapting the approach introduced in [22], [23] for the derivation of Wiergner's results. The analysis in [22], [23] is also used to obtain an interesting bound for the blow-up time t* in 3-D flows, in case solutions cease to be smooth: one must have t* < 0:159||u0||4Lp(Rn)º-5, where v is the dynamic viscosity.
12

Equações de advecção-difusão com aplicações às equações de Navier-Stokes

Schütz, Lineia January 2008 (has links)
Este trabalho consiste de duas partes. Na primeira, estendemos o resultado de Braz e Silva e Zingano [2], [3] sobre soluções u(•; t) ε C°([0; T[;Lp(Rn)) de equações de advecção-difusão em meios heterogêneos para classes mais gerais de equações parabólicas, aplicando os resultados nas equações de Navier-Stokes incompressíveis no plano formuladas em termos da vorticidade do escoamento. Em particular, estabelecemos estimativas mostrando o decaimento em certas normas do campo de velocidade u(•; t) em caso de escoamentos de energia infinita. Na segunda parte, consideramos as equações de Navier-Stokes em dimensão n = 2; 3 examinando soluções u(•; t) de energia finita. Inicialmente, obtemos uma nova derivação, mais simples, do resultado obtido originalmente por Kato [20] estabelecendo o decaimento assintótico (t → ∞) de ||u(•; t)||L²(Rn), para estados iniciais u0 ε H¹(Rn) (com divergente nulo) arbitrários. Na linha deste argumento obtemos uma formula»c~ao mais forte dos resultados fundamentais de Wiegner [36] relacionando u(•; t) com soluções evΔtu0 da equação do calor, adaptando o método recentemente introduzido em [22], [23] para a derivação destes resultados. O método de [22], [23] também é utilizado para estabelecermos (dimensão n=3) que, ocorrendo "blow- up"de u(•; t) em tempo finito t*, necessariamente t* < 0:159||u0||4Lp(Rn)º-5, sendo ν a viscosidade dinãmica do escoamento. / In the first part of the this work, we extend results by Braz e Silva e Zingano [2], [3] concerning Lp solutions u(•; t) ε C°([0; T[;Lp(Rn)) of advection-dicusion equations in heterogeneous media to broader classes of quasilinear parabolic equations, applying the results to incompressible Navier-Stokes flows in the plane by way of the vorticity formulation. In particular, we obtain some decay rates (as t → ∞) for certain norms of the velocity field u(•; t) in case of flow with infinity energy. In the second part, we consider the Navier-Stokes equations in dimension n = 2; 3 and examine solutions u(•; t) with finite energy. First, we give a new (and simpler) derivation of the time asymptotic result originally obtained by Kato [20] and Masuda [28] showing the decay of the L2 norm of divergence-free, finite- energy solutions. Following these footsteps, we give a stronger formulation of the fundamental results obtained by Wiegner [36] relating the velocity field u(•; t) to solutions evΔtu0 of the heat equation, adapting the approach introduced in [22], [23] for the derivation of Wiergner's results. The analysis in [22], [23] is also used to obtain an interesting bound for the blow-up time t* in 3-D flows, in case solutions cease to be smooth: one must have t* < 0:159||u0||4Lp(Rn)º-5, where v is the dynamic viscosity.
13

Formulação com dupla reciprocidade hipersingular do método dos elementos de contorno aplicada aos problemas difusivoadvectivos

Costalonga, Flávio 05 September 2011 (has links)
Made available in DSpace on 2016-12-23T14:08:14Z (GMT). No. of bitstreams: 1 Dissetacao Flavio Costalonga Cap 01 a 06.pdf: 1270537 bytes, checksum: eba9c30a1058132712ea41c5e259f54e (MD5) Previous issue date: 2011-09-05 / In this work two different boundary element formulations are presented for the modeling of two-dimensional problems of heat transfer, in which the phenomena of diffusion and forced convection are associated. The first formulation is based on the procedure known as Singular Dual Reciprocity, originally created for solving eigenvalue problems and other domain source problems. This technique has been improved by several authors for application in many other categories of problems, including the case discussed in this work, related to Diffusive-advective phenomena. On important feature of this technique is the use of radial basis functions to interpolate spatial derivatives related to the convective terms. The second formulation is the Hypersingular Dual Reciprocity, which has a structure similar to the Dual Reciprocity, but is obtained from the differentiation of integral equation with respect to the normal direction on the boundary. Thus, the kernel of the integrals are changed with the singularity order being increased. Are held, then simulations with examples that have analytical solution, where it is analyzed the influence of important parameters such as mesh refinement and the flow velocity. Physical constraints, numerical limitations, accuracy and other important characteristics related to each formulation are discussed in detail / Apresentam-se neste trabalho duas diferentes formulações do Método dos Elementos de Contorno, geradas para o modelamento de problemas bidimensionais de transferência de calor com escoamento, nos quais os fenômenos de difusão e convecção forçada estão associados. A primeira delas é fundamentada no procedimento conhecido como Dupla Reciprocidade Singular (FDRS), criado originalmente para solução de problemas de autovalor. Esta técnica foi aprimorada por diversos autores para muitas outras categorias de problemas, entre os quais o caso abordado no presente trabalho, usando uma interpolação com funções de base radial para o tratamento das derivadas espaciais dos termos convectivos. A segunda formulação é a Dupla Reciprocidade Hipersingular (FDRH), que apresenta uma estrutura similar à Dupla Reciprocidade Singular, mas é obtida a partir da equação integral inversa diferenciada com relação à direção normal ao contorno, de modo que a ordem das derivadas dos núcleos se altera. Assim os núcleos das integrais passam a ter singularidades de ordem superior (1/r e 1/r²) em relação às existentes na FDRS (ln r e 1/r). Realizam-se, então, simulações com exemplos que possuem solução analítica, onde é analisada a influência de importantes parâmetros, tais como o refinamento da malha e a velocidade do escoamento. Restrições físicas, limitações numéricas, precisão e outras características importantes relacionadas a cada formulação são discutidas com detalhe
14

p-Multigrid explícito para um método de volumes finitos de alta-ordem não estruturado / Explicit p-multigrid for an unstructured high-order finite volume method

Silva, Juan Eduardo Casavilca 02 June 2016 (has links)
Desde o importante trabalho de Barth e Frederickson (1990), um certo número de pesquisadores têm estudado o método de Volumes Finitos de alta-ordem k-exato, por exemplo o grupo do Prof. Ollivier-Gooch: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Outras discretizações espaciais de alta-ordem bastante populares são o método Galerkin Descontínuo e o método de Diferença Espectral; processos iterativos que involucram estes esquemas tem sido acelerados, nos últimos anos, por métodos p-multigrid. Porém, esta aceleração não tem sido aplicada no contexto do método de Volumes Finitos de alta-ordem, pelo menos para conhecimento do autor desta tese. Por isso, o objetivo desta pesquisa é adaptar o p-multigrid desenvolvido por Liang et al. (2009b) no contexto da Diferença Espectral, para o ambiente dos Volumes Finitos estudado pelo Prof. Ollivier-Gooch. A pesquisa começa implementando o solver VF-RK, de Volumes Finitos com avanço Runge-Kutta, para resolver as equações de advecção-difusão e de Euler aplicados a problemas estacionários, por exemplo, o escoamento transônico ao redor do NACA 0012. Depois, estuda-se o método p-multigrid no contexto da Diferença Espectral; o p-multigrid acelera o processo iterativo comutando níveis polinomiais de alta e de baixa-ordem. Após esse estudo, a adaptação ao âmbito dos Volumes Finitos é realizada resultando num p-multigrid relativamente mais simples porque, em contraposição com o p-multigrid para Diferença Espectral, não precisa de operadores de restrição e prolongação para a comunicação entre diferentes níveis polinomiais. A pesquisa conclui com uma comparação com o método de Volumes Finitos de 4a ordem sem p-multigrid (solver VF-RK). Nesse sentido, implementa-se o solver pMG, baseado no p-multigrid proposto, para resolver os problemas estacionários considerados na primeira parte do trabalho; o smoother do p-multigrid é o esquema Runge-Kutta do código VF-RK, e cada problema estacionário é resolvido utilizando diferentes Vciclos procurando sempre soluções de 4a ordem. Os resultados indicam que o método p-multigrid proposto é mais eficiente que o método de Volumes Finitos de 4a ordem sem p-multigrid, isto é, os dois métodos oferecem a mesma precisão mas o primeiro pode levar menos de 50% do tempo de CPU do segundo. / Since Barth and Frederickson\'s important work (Barth e Frederickson, 1990), a number of researchers have studied high-order k-exact Finite Volume method, for example Prof. Ollivier-Gooch\'s group: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Other quite popular high-order spatial discretizations are the Discontinuous Galerkin methods and the Spectral Difference methods; the iterative processes involving these schemes have been accelerated in recent years by p-multigrid methods. However, this acceleration has not been applied in the context of the high-order Finite Volume method, at least for the knowledge of the author of this thesis. Therefore, the objective of this research is to adapt the p-multigrid developed by Liang et al. (2009b) in the context of Spectral Difference methods, to the environment of Finite Volume studied by Prof. Ollivier-Gooch. This research begins by implementing the solver VF-RK, Finite Volume solver with Runge-Kutta advance, to compute the advection-diffusion equation and Euler equations applied to steady state problems, for example, the transonic flow around NACA 0012. Then, it is studied the p-multigrid method in the context of Spectral Difference schemes; p-multigrid accelerates the iterative process by switching polynomial levels of high- and low-order. After this study, the adaptation to the context of the Finite Volume scheme is performed resulting in a relatively simple p-multigrid because, in contrast to the p-multigrid for Spectral Difference schemes, it doesn\'t need restriction and prolongation operators for communication between different polynomial levels. The research concludes with a comparison with 4th order Finite Volume method without p-multigrid (solver VF-RK). Accordingly, the solver pMG, based on the proposed p-multigrid, is implemented to resolve the steady state problems considered in the first part of the work; the p-multigrid smoother is the Runge-Kutta scheme from VF-RK code, and each steady state problem is solved using different Vcycles, looking for 4th order solutions ever. The results indicate that the proposed p-multigrid method is more efficient than the 4th order Finite Volume method without p-multigrid: the two methods give the same accuracy but the first one can take less than 50% of second one\'s CPU time.
15

Simulação da dispersão de poluentes em lançamento de foguetes / Modelling of air pollution dispersion in rocket launches cases

Bainy, Bruno Kabke, Bainy, Bruno Kabke 24 February 2015 (has links)
Submitted by Maria Beatriz Vieira (mbeatriz.vieira@gmail.com) on 2017-05-29T15:07:15Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_bruno_kabke_bainy.pdf: 1791571 bytes, checksum: fbfdf2a30e93aa9c1820193c665cd912 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-05-29T21:22:58Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_bruno_kabke_bainy.pdf: 1791571 bytes, checksum: fbfdf2a30e93aa9c1820193c665cd912 (MD5) / Made available in DSpace on 2017-05-29T21:22:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_bruno_kabke_bainy.pdf: 1791571 bytes, checksum: fbfdf2a30e93aa9c1820193c665cd912 (MD5) Previous issue date: 2015-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Esta dissertação de mestrado propõe a elaboração inicial de um modelo para a dispersão de efluentes de foguetes e veículos espaciais. Neste estudo foi desenvolvida uma solução para a equação de advecção- difusão bidimensional transiente através da técnica GILTT, além de terem sido compilada da literatura algumas formulações para parâmetros micrometeorológicos e outras variáveis que representam fenômenos relevantes nas atividades de lançamento de foguetes. O modelo de dispersão foi testado com os experimentos de Hanford e Copenhagen com ótimos resultados. Além disso, foi rodado um caso particular para a região do Centro de Lançamentos de Alcântara para exemplificar e apresentar maiores detalhes do modelo. / This master thesis proposes a first attempt to elaborate a model for rocket exhaust dispersion. In this study, a solution to the time-dependant two-dimensional advectiondiffusion equation was obtained through the GILTT, as well as it assembles of some literature formulations for micrometeorological parameters and other variables which represent important phenomena in space vehicles launching. The dispersion model was tested against two experimental data, Hanford and Copenhagen, with great results, and an additional simulation was run using data from the Alcantara Launch Centre, aiming to exemplify and present aditional details of the model.
16

Resolução numérica de equações de advecção-difusão empregando malhas adaptativas / Numerical solution of advection-diusion equations using adaptative mesh renement

Oliveira, Alexandre Garcia de 07 July 2015 (has links)
Este trabalho apresenta um estudo sobre a solução numérica da equação geral de advecção-difusão usando uma metodologia numérica conservativa. Para a discretização espacial, é usado o Método de Volumes Finitos devido à natureza conservativa da equação em questão. O método é configurado de modo a ter suas variáveis centradas em centro de célula e, para as variáveis, como a velocidade, centradas nas faces um método de interpolação de segunda ordem é utilizado para um ajuste numérico ao centro. Embora a implementação computacional tenha sido feita de forma paramétrica de maneira a acomodar outros esquemas numéricos, a discretização temporal dá ênfase ao Método de Crank-Nicolson. Tal método numérico, sendo ele implícito, dá origem a um sistema linear de equações que, aqui, é resolvido empregando-se o Método Multigrid-Multinível. A corretude do código implementado é verificada a partir de testes por soluções manufaturadas, de modo a checar se a ordem de convergência prevista em teoria é alcançada pelos métodos numéricos. Um jato laminar é simulado, com o acoplamento entre a equação de Navier-Stokes e a equação geral de advecção-difusão, em um domínio computacional tridimensional. O jato é uma forma de vericar se o algoritmo de geração de malhas adaptativas funciona corretamente. O módulo produzido neste trabalho é baseado no código computacional AMR3D-P desenvolvido pelos grupos de pesquisa do IME-USP e o MFLab/FEMEC-UFU (Laboratório de Dinâmica de Fluidos da Universidade Federal de Uberlândia). A linguagem FORTRAN é utilizada para o desenvolvimento da metodologia numérica e as simulações foram executadas nos computadores do LabMAP(Laboratório da Matemática Aplicada do IME-USP) e do MFLab/FEMEC-UFU. / This work presents a study about the numerical solution of variable coecients advectiondi usion equation, or simply, general advection-diusion equation using a conservative numerical methodology. The Finite Volume Method is choosen as discretisation of the spatial domain because the conservative nature of the focused equation. This method is set up to have the scalar variable in a cell centered scheme and the vector quantities, such velocity, are face centered and they need a second order interpolation to get adjusted to the cell center. The computational code is parametric, in which, any implicit temporal discretisation can be choosen, but the emphasis relies on Crank-Nicolson method, a well-known second order method. The implicit nature of aforementioned method gives a linear system of equations which is solved here by the Multilevel-Multigrid method. The correctness of the computational code is checked by manufactured solution method used to inspect if the theoretical order of convergence is attained by the numerical methods. A laminar jet is simulated, coupling the Navier-Stokes equation and the general advection-diusion equation in a 3D computational domain. The jet is a good way to check the corectness of adaptative mesh renement algorithm. The module designed here is based in a previous implemented code AMR3D-P designed by IME-USP and MFLab/FEMEC-UFU (Fluid Dynamics Laboratory, Federal University of Uberlândia). The programming language used is FORTRAN and the simulations were run in LabMAP(Applied Mathematics Laboratoy at IME-USP) and MFLab/FEMEC-UFU computers.
17

Uma solução da equação difusão-advecção com o termo contragradiente

Pantoja, Pedro Henrique Bonfim 11 July 2014 (has links)
Submitted by Morgana Andrade (morgana.andrade@ufes.br) on 2016-03-22T17:05:04Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Pedro Henrique Bonfim Pantoja.pdf: 1965227 bytes, checksum: c6e11a3e91300bad3c95be08b469415f (MD5) / Approved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2016-03-23T14:21:49Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Pedro Henrique Bonfim Pantoja.pdf: 1965227 bytes, checksum: c6e11a3e91300bad3c95be08b469415f (MD5) / Made available in DSpace on 2016-03-23T14:21:49Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Pedro Henrique Bonfim Pantoja.pdf: 1965227 bytes, checksum: c6e11a3e91300bad3c95be08b469415f (MD5) / Neste trabalho, apresenta­se uma solução para equação de difusão­advecção considerando o  termo  contragradiente  que  é um termo  adicional. Esse termo  adicional  contém informações  sobre a assimetria, escala de tempo Lagrangeana e velocidade turbulenta vertical. A solução  da equação foi obtida pela utilização da técnica de Transformada de Laplace, considerando a  Camada  Limite  Planetária  (CLP)  como  um  sistema  de  multicamadas.  Os  parâmetros  turbulentos foram derivados da teoria de difusão estatística de Taylor, combinada com a teoria  da similaridade. Assim, são apresentadas simulações para diferentes valores de assimetria, o  que  propiciou  a  obtenção  de  uma  concentração  de  contaminantes  em  diferentes  alturas,  em  uma  camada  limite  convectiva.  A  avaliação  do  desempenho  do  modelo,  considerando  a  assimetria  no  processo  de  dispersão  de  poluentes  atmosféricos, foi realizada  através  de  um  experimento  de  tanque  convectivo  tradicional.  Nesse  experimento,  o  termo  contragradiente  influenciou a concentração de poluentes para uma camada limite convectiva. Entretanto, com  as  parametrizações  utilizadas,  o  modelo  não  conseguiu  captar  de  forma  eficiente  o  comportamento da concentração em pontos mais distantes da fonte. / In this paper presents a solution to the advection­diffusion equation considering the term is an  additional  term  countergradient.  This  additional  term  contains  information  asymmetry,  Lagrangian  time  scale  and  vertical  turbulent  velocity.  The  solution  of  the  equation  was  obtained  by  using  the  technique  of  Laplace  transform,  considering  the  planetary  boundary  layer (PBL)  as  a multilayer system. The  turbulent  parameters were  derived from statistical  distribution  theory  Taylor,  combined  with  the  theory  of similarity.  Hence,  Simulations  for  different  values  of  asymmetry, which  allowed to  obtain  a  concentration  of  contaminants  at  different  heights  in  a  convective  boundary  layer  is  displayed.  The  evaluation  of  model  performance,  considering  the  asymmetry  in  the  dispersion  of  air  pollutants  process  was  conducted  through  an  experiment  of  traditional  convective  tank.  In  this  experiment,  the  countergradient  influenced  the  concentration  of  pollutants  in  a  convective  boundary  layer.  However, with the parameterizations used, the model failed to capture efficiently the behavior  of concentration at points further away from the source.
18

p-Multigrid explícito para um método de volumes finitos de alta-ordem não estruturado / Explicit p-multigrid for an unstructured high-order finite volume method

Juan Eduardo Casavilca Silva 02 June 2016 (has links)
Desde o importante trabalho de Barth e Frederickson (1990), um certo número de pesquisadores têm estudado o método de Volumes Finitos de alta-ordem k-exato, por exemplo o grupo do Prof. Ollivier-Gooch: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Outras discretizações espaciais de alta-ordem bastante populares são o método Galerkin Descontínuo e o método de Diferença Espectral; processos iterativos que involucram estes esquemas tem sido acelerados, nos últimos anos, por métodos p-multigrid. Porém, esta aceleração não tem sido aplicada no contexto do método de Volumes Finitos de alta-ordem, pelo menos para conhecimento do autor desta tese. Por isso, o objetivo desta pesquisa é adaptar o p-multigrid desenvolvido por Liang et al. (2009b) no contexto da Diferença Espectral, para o ambiente dos Volumes Finitos estudado pelo Prof. Ollivier-Gooch. A pesquisa começa implementando o solver VF-RK, de Volumes Finitos com avanço Runge-Kutta, para resolver as equações de advecção-difusão e de Euler aplicados a problemas estacionários, por exemplo, o escoamento transônico ao redor do NACA 0012. Depois, estuda-se o método p-multigrid no contexto da Diferença Espectral; o p-multigrid acelera o processo iterativo comutando níveis polinomiais de alta e de baixa-ordem. Após esse estudo, a adaptação ao âmbito dos Volumes Finitos é realizada resultando num p-multigrid relativamente mais simples porque, em contraposição com o p-multigrid para Diferença Espectral, não precisa de operadores de restrição e prolongação para a comunicação entre diferentes níveis polinomiais. A pesquisa conclui com uma comparação com o método de Volumes Finitos de 4a ordem sem p-multigrid (solver VF-RK). Nesse sentido, implementa-se o solver pMG, baseado no p-multigrid proposto, para resolver os problemas estacionários considerados na primeira parte do trabalho; o smoother do p-multigrid é o esquema Runge-Kutta do código VF-RK, e cada problema estacionário é resolvido utilizando diferentes Vciclos procurando sempre soluções de 4a ordem. Os resultados indicam que o método p-multigrid proposto é mais eficiente que o método de Volumes Finitos de 4a ordem sem p-multigrid, isto é, os dois métodos oferecem a mesma precisão mas o primeiro pode levar menos de 50% do tempo de CPU do segundo. / Since Barth and Frederickson\'s important work (Barth e Frederickson, 1990), a number of researchers have studied high-order k-exact Finite Volume method, for example Prof. Ollivier-Gooch\'s group: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Other quite popular high-order spatial discretizations are the Discontinuous Galerkin methods and the Spectral Difference methods; the iterative processes involving these schemes have been accelerated in recent years by p-multigrid methods. However, this acceleration has not been applied in the context of the high-order Finite Volume method, at least for the knowledge of the author of this thesis. Therefore, the objective of this research is to adapt the p-multigrid developed by Liang et al. (2009b) in the context of Spectral Difference methods, to the environment of Finite Volume studied by Prof. Ollivier-Gooch. This research begins by implementing the solver VF-RK, Finite Volume solver with Runge-Kutta advance, to compute the advection-diffusion equation and Euler equations applied to steady state problems, for example, the transonic flow around NACA 0012. Then, it is studied the p-multigrid method in the context of Spectral Difference schemes; p-multigrid accelerates the iterative process by switching polynomial levels of high- and low-order. After this study, the adaptation to the context of the Finite Volume scheme is performed resulting in a relatively simple p-multigrid because, in contrast to the p-multigrid for Spectral Difference schemes, it doesn\'t need restriction and prolongation operators for communication between different polynomial levels. The research concludes with a comparison with 4th order Finite Volume method without p-multigrid (solver VF-RK). Accordingly, the solver pMG, based on the proposed p-multigrid, is implemented to resolve the steady state problems considered in the first part of the work; the p-multigrid smoother is the Runge-Kutta scheme from VF-RK code, and each steady state problem is solved using different Vcycles, looking for 4th order solutions ever. The results indicate that the proposed p-multigrid method is more efficient than the 4th order Finite Volume method without p-multigrid: the two methods give the same accuracy but the first one can take less than 50% of second one\'s CPU time.
19

Resolução numérica de equações de advecção-difusão empregando malhas adaptativas / Numerical solution of advection-diusion equations using adaptative mesh renement

Alexandre Garcia de Oliveira 07 July 2015 (has links)
Este trabalho apresenta um estudo sobre a solução numérica da equação geral de advecção-difusão usando uma metodologia numérica conservativa. Para a discretização espacial, é usado o Método de Volumes Finitos devido à natureza conservativa da equação em questão. O método é configurado de modo a ter suas variáveis centradas em centro de célula e, para as variáveis, como a velocidade, centradas nas faces um método de interpolação de segunda ordem é utilizado para um ajuste numérico ao centro. Embora a implementação computacional tenha sido feita de forma paramétrica de maneira a acomodar outros esquemas numéricos, a discretização temporal dá ênfase ao Método de Crank-Nicolson. Tal método numérico, sendo ele implícito, dá origem a um sistema linear de equações que, aqui, é resolvido empregando-se o Método Multigrid-Multinível. A corretude do código implementado é verificada a partir de testes por soluções manufaturadas, de modo a checar se a ordem de convergência prevista em teoria é alcançada pelos métodos numéricos. Um jato laminar é simulado, com o acoplamento entre a equação de Navier-Stokes e a equação geral de advecção-difusão, em um domínio computacional tridimensional. O jato é uma forma de vericar se o algoritmo de geração de malhas adaptativas funciona corretamente. O módulo produzido neste trabalho é baseado no código computacional AMR3D-P desenvolvido pelos grupos de pesquisa do IME-USP e o MFLab/FEMEC-UFU (Laboratório de Dinâmica de Fluidos da Universidade Federal de Uberlândia). A linguagem FORTRAN é utilizada para o desenvolvimento da metodologia numérica e as simulações foram executadas nos computadores do LabMAP(Laboratório da Matemática Aplicada do IME-USP) e do MFLab/FEMEC-UFU. / This work presents a study about the numerical solution of variable coecients advectiondi usion equation, or simply, general advection-diusion equation using a conservative numerical methodology. The Finite Volume Method is choosen as discretisation of the spatial domain because the conservative nature of the focused equation. This method is set up to have the scalar variable in a cell centered scheme and the vector quantities, such velocity, are face centered and they need a second order interpolation to get adjusted to the cell center. The computational code is parametric, in which, any implicit temporal discretisation can be choosen, but the emphasis relies on Crank-Nicolson method, a well-known second order method. The implicit nature of aforementioned method gives a linear system of equations which is solved here by the Multilevel-Multigrid method. The correctness of the computational code is checked by manufactured solution method used to inspect if the theoretical order of convergence is attained by the numerical methods. A laminar jet is simulated, coupling the Navier-Stokes equation and the general advection-diusion equation in a 3D computational domain. The jet is a good way to check the corectness of adaptative mesh renement algorithm. The module designed here is based in a previous implemented code AMR3D-P designed by IME-USP and MFLab/FEMEC-UFU (Fluid Dynamics Laboratory, Federal University of Uberlândia). The programming language used is FORTRAN and the simulations were run in LabMAP(Applied Mathematics Laboratoy at IME-USP) and MFLab/FEMEC-UFU computers.
20

Esquema numérico com reconstrução mínimos quadrados de alta ordem em malhas não-estruturadas para a formulação euleriana do transporte de partículas / Numerical scheme with high order least square reconstruction on unstructured grid to eulerian formulation of the particle transport

Saito, Olga Harumi 30 January 2008 (has links)
O estudo do transporte de partículas tem uma importância fundamental em diversas áreas de pesquisas como, por exemplo, na formação de gelo em uma aeronave pois pode afetar a sua sustentação e estabilidade. Tamanha é a preocupação com a segurança de vôo que diversos estudos têm sido realizados, resultando em códigos computacionais como o LEWICE nos Estados Unidos, TRAJICE no Reino Unido, ONERA na França e CANICE no Canadá. No Brasil, um dos estudo é feito pela EMBRAER em parceria com algumas instituições. O objetivo deste trabalho é desenvolver um algoritmo que possa ser empregado na trajetória das partículas, utilizando uma formulação euleriana que elimina a dificuldade da semeadura de partículas específica da formulação lagrangiana na determinação da fração de volume da partícula. O método empregado é dos volumes finitos em malhas não-estruturadas cuja principal chave está na reconstrução mínimos quadrados de alta ordem com restrição nos contornos. O desenvolvimento do trabalho engloba 3 etapas: definição da geometria e geração das malhas; utilização de um solver para o tratamento do escoamento do ar e obtenção do campo de velocidade; implementação e utilização do esquema numérico com reconstrução mínimos quadrados de alta ordem para simular o cálculo da fração de volume com imposição de condições limites apropriadas no contorno do corpo. Os resultados dos testes realizados mostram que o esquema numérico com reconstrução mínimos quadrados pode ser empregado na resolução de equações que apresentam uma região de descontinuidade, como é o caso da região de sombra, reduzindo a largura da banda de difusão numérica e overshoots. / The particle transport study has a fundamental importance in diverse research area like in the icing accretion on an aircraft because that can affect its sustentation and stability. The concern is so big that many researches have been carried through, resulting in computational codes like the LEWICE in the United States, TRAJICE in the United Kingdom, ONERA in France and CANICE in Canada. In Brazil, one of the study has been made by the EMBRAER with some institutes. The goal of this work is to develop an algorithm that can be used in the particles trajectory study, using an Eulerian method that eliminates the difficulty particle sowing, particular of the Lagrangian method, in the determination of the droplet fraction volume. This is made by the finite volume method on unstructured meshes whose main key is the high order reconstruction with restriction on the boundary. The development of the work involves 3 stages: geometry definition and mesh generation; using code for the treatment of the air flow and obtained flow velocity; use of the high order numerical scheme least square reconstruction to simulate the droplet fraction volume result with imposition of appropriate limit conditions in the body contour. The realized simulations shown that Least Square method can be used in problem resolution that present descontinuos region like is shadow region reducing numerical diffusion and overshoots.

Page generated in 0.0479 seconds