• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 20
  • 19
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 365
  • 208
  • 181
  • 138
  • 132
  • 120
  • 110
  • 90
  • 87
  • 70
  • 67
  • 57
  • 55
  • 53
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Adversarial Decision Making in Counterterrorism Applications

Mazicioglu, Dogucan 01 January 2017 (has links)
Our main objective is to improve decision making in counterterrorism applications by implementing expected utility for prescriptive decision making and prospect theory for descriptive modeling. The areas that we aim to improve are behavioral modeling of adversaries with multi objectives in counterterrorism applications and incorporating risk attitudes of decision makers to risk matrices in assessing risk within an adversarial counterterrorism framework. Traditionally, counterterrorism applications have been approached on a single attribute basis. We utilize a multi-attribute prospect theory approach to more realistically model the attacker’s behavior, while using expected utility theory to prescribe the appropriate actions to the defender. We evaluate our approach by considering an attacker with multiple objectives who wishes to smuggle radioactive material into the United States and a defender who has the option to implement a screening process to hinder the attacker. Next, we consider the use of risk matrices (a method widely used for assessing risk given a consequence and a probability pairing of a potential threat) in an adversarial framework – modeling an attacker and defender risk matrix using utility theory and linking the matrices with the Luce model. A shortcoming with modeling the attacker and the defender risk matrix using utility theory is utility theory’s failure to account for the decision makers’ deviation from rational behavior as seen in experimental literature. We consider an adversarial risk matrix framework that models the attacker risk matrix using prospect theory to overcome this shortcoming, while using expected utility theory to prescribe actions to the defender.
32

Adversarial Deep Learning Against Intrusion Detection Classifiers

Rigaki, Maria January 2017 (has links)
Traditional approaches in network intrusion detection follow a signature-based ap- proach, however the use of anomaly detection approaches based on machine learning techniques have been studied heavily for the past twenty years. The continuous change in the way attacks are appearing, the volume of attacks, as well as the improvements in the big data analytics space, make machine learning approaches more alluring than ever. The intention of this thesis is to show that using machine learning in the intrusion detection domain should be accompanied with an evaluation of its robustness against adversaries. Several adversarial techniques have emerged lately from the deep learning research, largely in the area of image classification. These techniques are based on the idea of introducing small changes in the original input data in order to make a machine learning model to misclassify it. This thesis follows a big data Analytics methodol- ogy and explores adversarial machine learning techniques that have emerged from the deep learning domain, against machine learning classifiers used for network intrusion detection. The study looks at several well known classifiers and studies their performance under attack over several metrics, such as accuracy, F1-score and receiver operating character- istic. The approach used assumes no knowledge of the original classifier and examines both general and targeted misclassification. The results show that using relatively sim- ple methods for generating adversarial samples it is possible to lower the detection accuracy of intrusion detection classifiers from 5% to 28%. Performance degradation is achieved using a methodology that is simpler than previous approaches and it re- quires only 6.25% change between the original and the adversarial sample, making it a candidate for a practical adversarial approach.
33

Defending Against Adversarial Attacks Using Denoising Autoencoders

Rehana Mahfuz (8617635) 24 April 2020 (has links)
Gradient-based adversarial attacks on neural networks threaten extremely critical applications such as medical diagnosis and biometric authentication. These attacks use the gradient of the neural network to craft imperceptible perturbations to be added to the test data, in an attempt to decrease the accuracy of the network. We propose a defense to combat such attacks, which can be modified to reduce the training time of the network by as much as 71%, and can be further modified to reduce the training time of the defense by as much as 19%. Further, we address the threat of uncertain behavior on the part of the attacker, a threat previously overlooked in the literature that considers mostly white box scenarios. To combat uncertainty on the attacker's part, we train our defense with an ensemble of attacks, each generated with a different attack algorithm, and using gradients of distinct architecture types. Finally, we discuss how we can prevent the attacker from breaking the defense by estimating the gradient of the defense transformation.
34

Image Transfer Between Magnetic Resonance Images and Speech Diagrams

Wang, Kang 03 December 2020 (has links)
Realtime Magnetic Resonance Imaging (MRI) is a method used for human anatomical study. MRIs give exceptionally detailed information about soft-tissue structures, such as tongues, that other current imaging techniques cannot achieve. However, the process requires special equipment and is expensive. Hence, it is not quite suitable for all patients. Speech diagrams show the side view positions of organs like the tongue, throat, and lip of a speaking or singing person. The process of making a speech diagram is like the semantic segmentation of an MRI, which focuses on the selected edge structure. Speech diagrams are easy to understand with a clear speech diagram of the tongue and inside mouth structure. However, it often requires manual annotation on the MRI machine by an expert in the field. By using machine learning methods, we achieved transferring images between MRI and speech diagrams in two directions. We first matched videos of speech diagram and tongue MRIs. Then we used various image processing methods and data augmentation methods to make the paired images easy to train. We built our network model inspired by different cross-domain image transfer methods and applied reference-based super-resolution methods—to generate high-resolution images. Thus, we can do the transferring work through our network instead of manually. Also, generated speech diagram can work as an intermediary part to be transferred to other medical images like computerized tomography (CT), since it is simpler in structure compared to an MRI. We conducted experiments using both the data from our database and other MRI video sources. We use multiple methods to do the evaluation and comparisons with several related methods show the superiority of our approach.
35

Efficient and Secure Deep Learning Inference System: A Software and Hardware Co-design Perspective

January 2020 (has links)
abstract: The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On the one hand, the impressive performance achieved by the DNN normally accompanies with the drawbacks of intensive memory and power usage due to enormous model size and high computation workload, which significantly hampers their deployment on the resource-limited cyber-physical systems or edge devices. Thus, the urgent demand for enhancing the inference efficiency of DNN has also great research interests across various communities. On the other hand, scientists and engineers still have insufficient knowledge about the principles of DNN which makes it mostly be treated as a black-box. Under such circumstance, DNN is like "the sword of Damocles" where its security or fault-tolerance capability is an essential concern which cannot be circumvented. Motivated by the aforementioned concerns, this dissertation comprehensively investigates the emerging efficiency and security issues of DNNs, from both software and hardware design perspectives. From the efficiency perspective, as the foundation technique for efficient inference of target DNN, the model compression via quantization is elaborated. In order to maximize the inference performance boost, the deployment of quantized DNN on the revolutionary Computing-in-Memory based neural accelerator is presented in a cross-layer (device/circuit/system) fashion. From the security perspective, the well known adversarial attack is investigated spanning from its original input attack form (aka. Adversarial example generation) to its parameter attack variant. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
36

To Encourage or to Restrict: the Label Dependency in Multi-Label Learning

Yang, Zhuo 06 1900 (has links)
Multi-label learning addresses the problem that one instance can be associated with multiple labels simultaneously. Understanding and exploiting the Label Dependency (LD) is well accepted as the key to build high-performance multi-label classifiers, i.e., classifiers having abilities including but not limited to generalizing well on clean data and being robust under evasion attack. From the perspective of generalization on clean data, previous works have proved the advantage of exploiting LD in multi-label classification. To further verify the positive role of LD in multi-label classification and address previous limitations, we originally propose an approach named Prototypical Networks for Multi- Label Learning (PNML). Specially, PNML addresses multi-label classification from the angle of estimating the positive and negative class distribution of each label in a shared nonlinear embedding space. PNML achieves the State-Of-The-Art (SOTA) classification performance on clean data. From the perspective of robustness under evasion attack, as a pioneer, we firstly define the attackability of an multi-label classifier as the expected maximum number of flipped decision outputs by injecting budgeted perturbations to the feature distribution of data. Denote the attackability of a multi-label classifier as C∗, and the empirical evaluation of C∗ is an NP-hard problem. We thus develop a method named Greedy Attack Space Exploration (GASE) to estimate C∗ efficiently. More interestingly, we derive an information-theoretic upper bound for the adversarial risk faced by multi-label classifiers. The bound unveils the key factors determining the attackability of multi-label classifiers and points out the negative role of LD in multi-label classifiers’ adversarial robustness, i.e. LD helps the transfer of attack across labels, which makes multi-label classifiers more attackable. One step forward, inspired by the derived bound, we propose a Soft Attackability Estimator (SAE) and further develop Adversarial Robust Multi-label learning with regularized SAE (ARM-SAE) to improve the adversarial robustness of multi-label classifiers. This work gives a more comprehensive understanding of LD in multi-label learning. The exploiting of LD should be encouraged since its positive role in models’ generalization on clean data, but be restricted because of its negative role in models’ adversarial robustness.
37

Deconfounding and Generating Embeddings of Drug-Induced Gene Expression Profiles Using Deep Learning for Drug Repositioning Applications

Alsulami, Reem A. 24 April 2022 (has links)
Drug-induced gene expression profiles are rich information sources that can help to measure the effect of a drug on the transcriptional state of cells. However, the available experimental data only covers a limited set of conditions such as treatment time, dosages, and cell lines. This poses a challenge for neural network models to learn embeddings that can be generalized to new experimental conditions. In this project, we focus on the cell line as the confounder variable and train an Adversarial Neural Network to extract transcriptional effects that are conserved across multiple cell lines, and can thus be more confidently generalized to the biological setting of interest. Additionally, we investigate several methods to test whether our approach can simultaneously learn biologically valid embeddings and deconfound the effect of cell lines on the data distribution
38

Deep Learning for Crack-Like Object Detection

Zhang, Kaige 01 August 2019 (has links)
Cracks are common defects on surfaces of man-made structures such as pavements, bridges, walls of nuclear power plants, ceilings of tunnels, etc. Timely discovering and repairing of the cracks are of great significance and importance for keeping healthy infrastructures and preventing further damages. Traditionally, the cracking inspection was conducted manually which was labor-intensive, time-consuming and costly. For example, statistics from the Central Intelligence Agency show that the world’s road network length has reached 64,285,009 km, of which the United States has 6,586,610 km. It is a huge cost to maintain and upgrade such an immense road network. Thus, fully automatic crack detection has received increasing attention. With the development of artificial intelligence (AI), the deep learning technique has achieved great success and has been viewed as the most promising way for crack detection. Based on deep learning, this research has solved four important issues existing in crack-like object detection. First, the noise problem caused by the textured background is solved by using a deep classification network to remove the non-crack region before conducting crack detection. Second, the computational efficiency is highly improved. Third, the crack localization accuracy is improved. Fourth, the proposed model is very stable and can be used to deal with a wide range of crack detection tasks. In addition, this research performs a preliminary study about the future AI system, which provides a concept that has potential to realize fully automatic crack detection without human’s intervention.
39

A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing

Fu, Minghan January 2021 (has links)
Hazy images are often subject to color distortion, blurring and other visible quality degradation. Some existing CNN-based methods have shown great performance on removing the homogeneous haze, but they are not robust in the non-homogeneous case. The reason is twofold. Firstly, due to the complicated haze distribution, texture details are easy to get lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to the over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using the 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing the wavelet transform in the DWT branch, our proposed method can retain more high-frequency information in feature maps. To prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art quantitatively and qualitatively. / Thesis / Master of Applied Science (MASc)
40

Fibromyalgia Impact and Depressive Symptoms: Can Perceiving a Silver Lining Make a Difference?

Hirsch, Jameson K., Treaster, Morgan K., Kaniuka, Andrea R., Brooks, Byron D., Sirois, Fuschia M., Kohls, Niko, Nöfer, Eberhard, Toussaint, Loren L., Offenbächer, Martin 01 August 2020 (has links)
Individuals with fibromyalgia are at greater risk for depressive symptoms than the general population, and this may be partially attributable to physical symptoms that impair day-to-day functioning. However, individual-level protective characteristics may buffer risk for psychopathology. For instance, the ability to perceive a “silver lining” in one’s illness may be related to better mental and physical health. We examined perceived silver lining as a potential moderator of the relation between fibromyalgia impact and depressive symptoms. Our sample of persons with fibromyalgia (N = 401) completed self-report measures including the Fibromyalgia Impact Questionnaire-Revised, Depression Anxiety Stress Scales, and the Silver Lining Questionnaire. Moderation analyses covaried age, sex, and ethnicity. Supporting hypotheses, increasing impact of disease was related to greater depressive symptoms, and perceptions of a silver lining attenuated that association. Despite the linkage between impairment and depressive symptoms, identifying positive aspects or outcomes of illness may reduce risk for psychopathology. Therapeutically promoting perception of a silver lining, perhaps via signature strengths exercises or a blessings journal, and encouraging cognitive reframing of the illness experience, perhaps via Motivational Interviewing or Cognitive Behavioral Therapy, may reduce depressive symptoms in persons with fibromyalgia.

Page generated in 0.0796 seconds