• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 21
  • 19
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 378
  • 219
  • 189
  • 146
  • 136
  • 127
  • 115
  • 93
  • 91
  • 73
  • 71
  • 61
  • 56
  • 55
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Quantifying Information Leakage via Adversarial Loss Functions: Theory and Practice

January 2020 (has links)
abstract: Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This dissertation addresses this challenge. This work introduces a tunable leakage measure called maximal $\alpha$-leakage which quantifies the maximal gain of an adversary in inferring any function of a data set. The inferential capability of the adversary is modeled by a class of loss functions, namely, $\alpha$-loss. The choice of $\alpha$ determines specific adversarial actions ranging from refining a belief for $\alpha =1$ to guessing the best posterior for $\alpha = \infty$, and for the two specific values maximal $\alpha$-leakage simplifies to mutual information and maximal leakage, respectively. Maximal $\alpha$-leakage is proved to have a composition property and be robust to side information. There is a fundamental disjoint between theoretical measures of information leakages and their applications in practice. This issue is addressed in the second part of this dissertation by proposing a data-driven framework for learning Censored and Fair Universal Representations (CFUR) of data. This framework is formulated as a constrained minimax optimization of the expected $\alpha$-loss where the constraint ensures a measure of the usefulness of the representation. The performance of the CFUR framework with $\alpha=1$ is evaluated on publicly accessible data sets; it is shown that multiple sensitive features can be effectively censored to achieve group fairness via demographic parity while ensuring accuracy for several \textit{a priori} unknown downstream tasks. Finally, focusing on worst-case measures, novel information-theoretic tools are used to refine the existing relationship between two such measures, $(\epsilon,\delta)$-DP and R\'enyi-DP. Applying these tools to the moments accountant framework, one can track the privacy guarantee achieved by adding Gaussian noise to Stochastic Gradient Descent (SGD) algorithms. Relative to state-of-the-art, for the same privacy budget, this method allows about 100 more SGD rounds for training deep learning models. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
92

Generalized Domain Adaptation for Visual Domains

January 2020 (has links)
abstract: Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains. This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation. The models were tested across multiple computer vision datasets for domain adaptation. The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation. / Dissertation/Thesis / Masters Thesis Computer Science 2020
93

Contribution transdisciplinaire à la réglementation de l'Union Européenne de l'expertise du risque biologique pour la santé et l'environnement. / Transdisciplinary contribution to the European Union's regulation of biological risk expertise for health and the environment

Yebga Hot, Ange Hélène 10 May 2019 (has links)
L’expertise du risque biologique joue un rôle central dans l’élaboration et la mise en œuvre de la politique sanitaire et environnementale au niveau de l’Union européenne. Depuis la crise dite de la « vache folle », le législateur de l’Union a reconnu la nécessité d’encadrer davantage cette expertise. Toutefois, si le droit de l’Union s’intéresse au cadre scientifique de l’expertise du risque biologique, il traite de façon lacunaire la question de son cadre juridique. En effet, si les exigences d’indépendance, d’impartialité et de transparence sont affirmées à l’égard de l’expert, leur application manque de clarté et menace à terme la protection de la santé et de l’environnement des citoyens de l’Union. Pour remédier à ce problème, cette étude propose des critères ayant pour but l’établissement d’une réglementation au niveau de l’Union de l’expertise du risque biologique. Ces critères ont été établis après l’analyse du cadre juridique existant, des modèles d’expertise issus des législations de certains Etats membres et tiers à l’Union ainsi que de contributions doctrinales. / Biological risk expertise plays a central role in the development and implementation of health and environmental policy at EU level. Since the "mad cow" crisis, the Union's legislator has recognized the need to provide more guidance for this expertise. However, while EU law is concerned with the scientific framework of biological risk expertise, it does not address the issue of its legal framework in a comprehensive way. Indeed, while the requirements of independence, impartiality and transparency are affirmed with regard to the expert, their application lacks clarity and ultimately threatens the protection of the health and environment of EU citizens. To address this problem, this study proposes criteria for establishing EU-level regulation of biological risk expertise. These criteria were established after analysis of the existing legal framework, models of expertise from the legislation of certain Member States and third countries as well as doctrinal contributions.
94

Generation of cyber attack data using generative techniques

Nidhi Nandkishor Sakhala (6636128) 15 May 2019 (has links)
<div><div><div><p>The presence of attacks in day-to-day traffic flow in connected networks is considerably less compared to genuine traffic flow. Yet, the consequences of these attacks are disastrous. It is very important to identify if the network is being attacked and block these attempts to protect the network system. Failure to block these attacks can lead to loss of confidential information and reputation and can also lead to financial loss. One of the strategies to identify these attacks is to use machine learning algorithms that learn to identify attacks by looking at previous examples. But since the number of attacks is small, it is difficult to train these machine learning algorithms. This study aims to use generative techniques to create new attack samples that can be used to train the machine learning based intrusion detection systems to identify more attacks. Two metrics are used to verify that the training has improved and a binary classifier is used to perform a two-sample test for verifying the generated attacks.</p></div></div></div>
95

Cascading Generative Adversarial Networks for Targeted

Hamdi, Abdullah 09 April 2018 (has links)
Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.
96

Ichthyoplankton Classification Tool using Generative Adversarial Networks and Transfer Learning

Aljaafari, Nura 15 April 2018 (has links)
The study and the analysis of marine ecosystems is a significant part of the marine science research. These systems are valuable resources for fisheries, improving water quality and can even be used in drugs production. The investigation of ichthyoplankton inhabiting these ecosystems is also an important research field. Ichthyoplankton are fish in their early stages of life. In this stage, the fish have relatively similar shape and are small in size. The currently used way of identifying them is not optimal. Marine scientists typically study such organisms by sending a team that collects samples from the sea which is then taken to the lab for further investigation. These samples need to be studied by an expert and usually end needing a DNA sequencing. This method is time-consuming and requires a high level of experience. The recent advances in AI have helped to solve and automate several difficult tasks which motivated us to develop a classification tool for ichthyoplankton. We show that using machine learning techniques, such as generative adversarial networks combined with transfer learning solves such a problem with high accuracy. We show that using traditional machine learning algorithms fails to solve it. We also give a general framework for creating a classification tool when the dataset used for training is a limited dataset. We aim to build a user-friendly tool that can be used by any user for the classification task and we aim to give a guide to the researchers so that they can follow in creating a classification tool.
97

Applications of Tropical Geometry in Deep Neural Networks

Alfarra, Motasem 04 1900 (has links)
This thesis tackles the problem of understanding deep neural network with piece- wise linear activation functions. We leverage tropical geometry, a relatively new field in algebraic geometry to characterize the decision boundaries of a single hidden layer neural network. This characterization is leveraged to understand, and reformulate three interesting applications related to deep neural network. First, we give a geo- metrical demonstration of the behaviour of the lottery ticket hypothesis. Moreover, we deploy the geometrical characterization of the decision boundaries to reformulate the network pruning problem. This new formulation aims to prune network pa- rameters that are not contributing to the geometrical representation of the decision boundaries. In addition, we propose a dual view of adversarial attack that tackles both designing perturbations to the input image, and the equivalent perturbation to the decision boundaries.
98

Evolutionary Design of Near-Optimal Controllers for Autonomous Systems Operating in Adversarial Environments

Androulakakis, Pavlos 04 October 2021 (has links)
No description available.
99

Partial Facial Re-imaging Using Generative Adversarial Networks

Desentz, Derek 28 May 2021 (has links)
No description available.
100

ADVERSARIAL LEARNING ON ROBUSTNESS AND GENERATIVE MODELS

Qingyi Gao (11211114) 03 August 2021 (has links)
<div>In this dissertation, we study two important problems in the area of modern deep learning: adversarial robustness and adversarial generative model. In the first part, we study the generalization performance of deep neural networks (DNNs) in adversarial learning. Recent studies have shown that many machine learning models are vulnerable to adversarial attacks, but much remains unknown concerning its generalization error in this scenario. We focus on the $\ell_\infty$ adversarial attacks produced under the fast gradient sign method (FGSM). We establish a tight bound for the adversarial Rademacher complexity of DNNs based on both spectral norms and ranks of weight matrices. The spectral norm and rank constraints imply that this class of networks can be realized as a subset of the class of a shallow network composed with a low dimensional Lipschitz continuous function. This crucial observation leads to a bound that improves the dependence on the network width compared to previous works and achieves depth independence. We show that adversarial Rademacher complexity is always larger than its natural counterpart, but the effect of adversarial perturbations can be limited under our weight normalization framework. </div><div></div><div>In the second part, we study deep generative models that receive great success in many fields. It is well-known that the complex data usually does not populate its ambient Euclidean space but resides in a lower-dimensional manifold instead. Thus, misspecifying the latent dimension in generative models will result in a mismatch of latent representations and poor generative qualities. To address these problems, we propose a novel framework called Latent Wasserstein GAN (LWGAN) to fuse the auto-encoder and WGAN such that the intrinsic dimension of data manifold can be adaptively learned by an informative latent distribution. In particular, we show that there exist an encoder network and a generator network in such a way that the intrinsic dimension of the learned encodes distribution is equal to the dimension of the data manifold. Theoretically, we prove the consistency of the estimation for the intrinsic dimension of the data manifold and derive a generalization error bound for LWGAN. Comprehensive empirical experiments verify our framework and show that LWGAN is able to identify the correct intrinsic dimension under several scenarios, and simultaneously generate high-quality synthetic data by samples from the learned latent distribution. </div><div><br></div>

Page generated in 0.7901 seconds