• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 16
  • 15
  • 15
  • 14
  • 12
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Προσομοίωση ατμοσφαιρικής ρύπανσης Πατρών με μοντέλο τύπου Gauss και εκτίμηση συμβολής πηγών ρύπανσης

Τσιμπούκης, Βασίλειος 09 July 2013 (has links)
Η ατμοσφαιρική ρύπανση επηρεάζει την δημόσια υγεία, το φυσικό οικοσύστημα και επιφέρει μεταβολές στις κλιματικές συνθήκες. Το πρόβλημα της αέριας ρύπανσης παρουσιάζεται εντονότερο σε αστικές περιοχές, όπου η συσσώρευση ανθρωπίνων δραστηριοτήτων οδηγεί κατά κανόνα σε αυξημένες εκπομπές αερίων. Κάτω από την επήρεια δυσμενών μετεωρολογικών συνθηκών, τα επίπεδα συγκεντρώσεων των ρύπων μπορούν να ξεπεράσουν τα όρια της Παγκόσμιας Οργάνωσης Υγείας. Για την αποτελεσματική αντιμετώπιση του προβλήματος είναι απαραίτητη η ανάλυση και η σωστή περιγραφή όλων των φαινομένων και παραγόντων που καθορίζουν τις σχέσεις πηγής – αποδέκτη και ατμοσφαιρικών ρύπων. Για το σκοπό αυτό ενδείκνυνται κυρίως μαθηματικά μοντέλα προσομοίωσης μετεωρολογικών φαινομένων και φαινομένων διασποράς και μετασχηματισμού ρύπων. Η έντονη ευαισθητοποίηση της κοινής γνώμης σε θέματα σχετικά με την προστασία του περιβάλλοντος αναγκάζει τις κυβερνήσεις των χωρών να επιβάλλουν την διερεύνηση των συνεπειών έργων και δραστηριοτήτων στο ατμοσφαιρικό περιβάλλον. Τα μοντέλα διασποράς ατμοσφαιρικών ρύπων είναι εύχρηστα εργαλεία που μπορούν να εκτιμήσουν συγκεντρώσεις ρύπων, έτσι ώστε αυτές να είναι αντιπροσωπευτικές στο χώρο και στον χρόνο. Οι μετρήσεις ρύπων με όργανα λαμβάνονται σε συγκεκριμένες θέσεις και ως εκ τούτου δεν είναι αντιπροσωπευτικές για μεγαλύτερες περιοχές. Μέσες τιμές ρύπων για μεγαλύτερες περιοχές υπολογίζονται εύκολα με μοντέλα ατμοσφαιρικής ρύπανσης. Σκοπός αυτής της εργασίας, είναι η πρόβλεψη των συγκεντρώσεων των ρύπων διοξειδίου του θείου SO2, ολικών οξειδίων του αζώτου NOx και της ποσοστιαίας κατανομής της συνεισφοράς των πηγών ρύπανσης στις συγκεντρώσεις των ρύπων που καταγράφονται στις θέσεις των αποδεκτών με την χρήση του λογισμικού AERMOD της Εταιρίας Περιβαλλοντικής Προστασίας (EPA) των ΗΠΑ. Το AERMOD χρησιμοποιεί γκαουσιανά μοντέλα διασποράς. Για τον σκοπό αυτό συγκεντρώνονται και χρησιμοποιούνται πολλά και διαφορετικού τύπου δεδομένα, όπως μετεωρολογικά, γεωγραφικά, κυκλοφορίας αυτοκινήτων και πλοίων, εκπομπές ρύπων κ.α. Επίσης γίνεται η υπόθεση, ότι οι μεγαλύτερες συνεισφορές στην ατμοσφαιρική ρύπανση της Πάτρας γίνονται από την κυκλοφορία των αυτοκινήτων, από τα πλοία του λιμανιού και τις κεντρικές θερμάνσεις των κατοικιών. Η πρόβλεψη που προκύπτει μετά από την επεξεργασία των παραπάνω δεδομένων από το πρόγραμμα AERMOD συγκρίνεται με τα διαθέσιμα αποτελέσματα των μετρήσεων για ατμοσφαιρικούς ρύπους από το Εργαστήριο Τεχνολογίας του Περιβάλλοντος, που έγιναν στην Πάτρα στο διάστημα από τις 13 Νοεμβρίου του 1997 έως τις 23 Ιανουαρίου του 1998, κατά τις πρωινές (8:30 – 9:30) και βραδινές ώρες (20:30 – 21:30) στα πλαίσια διπλωματικής εργασίας υπό την επίβλεψη του κ. Π. Γιαννόπουλου. Στο Κεφάλαιο 1 αναφέρονται γενικές πληροφορίες για την ατμοσφαιρική ρύπανση, την πόλη της Πάτρας, για τους σημαντικότερους ρύπους της ατμόσφαιρας, αλλά και το πώς τα μετεωρολογικά φαινόμενα επηρεάζουν την διασπορά των ρύπων. Στο 2ο Κεφάλαιο αναφέρονται γενικές πληροφορίες για τα σημαντικότερα μαθηματικά μοντέλα ατμοσφαιρικής διασποράς, ενώ στο 3ο κεφάλαιο γίνεται μία γενική περιγραφή του θεωρητικού υπόβαθρου του προγράμματος AERMOD και του Προγράμματος AERMET. Στο Κεφάλαιο 4 παρουσιάζονται τα γεωγραφικά και μετεωρολογικά δεδομένα, τα δεδομένα για τους φόρτους κυκλοφορίας των οχημάτων στην πόλη της Πάτρας αλλά και πληροφορίες για την κίνηση των πλοίων στο παλιό λιμάνι της Πάτρας. Στο 4ο κεφάλαιο παρουσιάζονται οι υπολογισμοί των εκπομπών των ρύπων από τα αυτοκίνητα, τα πλοία και τις κεντρικές θερμάνσεις των κατοικιών. Επίσης παρουσιάζεται η ποσοστιαία κατανομή των εκπομπών από τις πηγές ατμοσφαρικής ρύπανσης και η συνεισφορά της κάθε μιας στην ρύπανση της ατμόσφαιρας. Τέλος παρουσιάζονται οι προβλέψεις που προκύπτουν για τις συγκεντρώσεις των ρύπων στις θέσεις των αποδεκτών και η σύγκριση αυτών με τις μετρήσεις για ατμοσφαιρικούς ρύπους που είχαν γίνει από το Νοέμβριο του 97 έως τον Ιανουάριο του 98. Στο Κεφάλαιο 5 παρουσιάζονται τα συμπεράσματα της εργασίας. Σαν συμπέρασμα της εργασίας προκύπτει ότι τα γκαουσιανά μοντέλα ατμοσφαιρικής διασποράς είναι χρήσιμα εργαλεία για την βραχυπρόθεσμη πρόγνωση των επιπέδων ρύπανσης, την εκτίμηση της συνεισφοράς των επί μέρους πηγών στην ποιότητα του αέρα και τη βελτιστοποίηση των στρατηγικών αντιρρύπανσης. Επισημαίνεται ότι τα μοντέλα προσομοίωσης αποτελούν την μοναδική μεθοδολογία αναφορικά με την δυνατότητα εκτίμησης της συνεισφοράς των επιμέρους πηγών. Επίσης, από τα αποτελέσματα αυτής της εργασίας προκύπτουν χρήσιμα συμπεράσματα για την προέλευση της ατμοσφαιρικής ρύπανσης στην πόλη της Πάτρας, όπως το ότι το μεγαλύτερο ποσοστό της (65 – 76% για το SO2 και 85 – 92% για NOx) προέρχεται από την κυκλοφορία των οχημάτων, ενώ αξιοσημείωτα είναι και τα ποσοστά των ρύπων που προέρχονται από τις κεντρικές θερμάνσεις (17 – 29% για το SO2 και 7,5 – 14,2% για NOx). Επίσης από τα αποτελέσματα φαίνεται ότι τα ποσοστά των ΝΟx που προέρχονται από τα πλοία είναι πολύ μικρά (0,3% - 0,4%), ενώ αντίθετα τα αντίστοιχα ποσοστά του SO2 (6% – 7%) είναι αξιοσημείωτα. Τέλος, άξιο αναφοράς είναι ότι όπως προκύπτει από τις συγκεντρώσεις των ρύπων που προβλέπει το AERMOD, φαίνεται ότι σε μία ζώνη πλάτους 400 m γύρω από το λιμάνι το ποσοστό της συγκέντρωσης του SO2 είναι αυξημένο (8% – 9%). / Air pollution affects public health, natural ecosystem and bring changes in climatic conditions. The problem of air pollution are most marked in urban areas, where the accumulation of human activities should lead to increased greenhouse gases. Under the influence of adverse weather conditions, the concentration levels of pollutants can overcome the limits of the World Health Organization. For the effective address of this problem is necessary to analyze all phenomena and factors that define the relationship source - receptor and atmospheric pollutants. For this purpose are suitable mathematical models simulating weather patterns and phenomena of dispersion and transformation of pollutants. The intense public awareness on issues related to the protection of the environment forces governments to impose the investigation of the effects of projects to the atmosphere. The air pollutant dispersion models are handy tools that can estimate pollutant concentrations, so that they are representative in space and time. The measurements of pollutants with instruments done at specific locations and therefore they are not representative for larger areas. Mean values for pollutants at larger areas easily calculated with models of atmospheric pollution. The aim of this work is the prediction of pollutant concentrations of sulfur dioxide SO2, total nitrogen oxides NOx and the percentage distribution of the contribution of pollution sources in pollutant concentrations recorded at the locations of receptors with the use of the software AERMOD. AERMOD belongs to the Environmental Protection Company (EPA) in the USA. AERMOD uses Gaussian dispersion models. For this purpose collected and used many different types of data, such as meteorological, geographical, automobile traffic and ship emissions, etc. Also it is assumed that the greatest contributions to air pollution of Patras come from the circulation of cars, from the port's ships and from the heating installations. The prediction obtained after processing the above data from the AERMOD program comes in comparison with the available results of measurements of air pollutants from the Laboratory of Environmental Engineering, held in Patras in the period from 13 November 1997 until 23 January 1998 in the morning (8:30 - 9:30) and evening (20:30 - 21:30) in the thesis under the supervision of Mr. P. Giannopoulos. In Chapter 1 reported general information on air pollution, about the significant atmospheric pollutants, and how weather conditions affect the dispersion of pollutants. In the second chapter reported general information about the most important mathematical atmospheric dispersion models, while in the third chapter gives a general description for the theoretical background of the programs AERMOD and AERMET. In Chapter 4 presents the geographical and meteorological data, data on motor vehicle traffic volumes in the city of Patras and information on the movement of ships in the old harbor of Patras. In the fourth chapter presented calculations of emissions of pollutants from cars, ships and central heating of homes. Also in the fourth chapter reported the percentage distribution of emissions from sources of atmospheric pollution and contribution of each in the pollution. Finally in the fourth chapter presented the forecasts for the concentrations of pollutants in the positions of the receptors and compare them with measurements for atmospheric pollutants that were made from November 97 until January 98. In Chapter 5 presented the conclusions of the work. As a conclusion of this study shows that the Gaussian atmospheric dispersion models are useful tools for short-term forecasting of pollution levels, and for the assessment of the contribution of individual sources on air quality. Noted that the simulation models are the unique methodology regarding the possibility of assessing the contribution of individual sources. Also, from the results of this work resulting conclusions about the origin of air pollution in the city of Patras, such that the highest percentage (65 - 76% for SO2 and 85 to 92% for NOx) comes from traffic vehicles, while noteworthy are the percentages of pollutants from central heating (17 - 29% for SO2 and 7.5 to 14.2% for NOx). Also, from the results it appears that rates of NOx from ships are very small (0.3% - 0.4%), while the corresponding percentages of SO2 (6% - 7%) is remarkable. Finally, it is worth mentioning that as indicated by the concentrations of pollutants that AERMOD calculates , it seems that in a zone extending 400 m around the harbor, the percentage of the concentration of SO2 is increased (8% - 9%).
32

Consequências do funcionamento da Usina Termelétrica Borborema S.A. para a Região Metropolitana de Campina Grande-PB.

CERQUEIRA, Joaci dos Santos. 10 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-10T14:25:54Z No. of bitstreams: 1 JOACI DOS SANTOS CERQUEIRA - TESE (PPGRN) 2018.pdf: 25053168 bytes, checksum: f171a30ed512369a6372b1d77a7bb854 (MD5) / Made available in DSpace on 2018-10-10T14:25:54Z (GMT). No. of bitstreams: 1 JOACI DOS SANTOS CERQUEIRA - TESE (PPGRN) 2018.pdf: 25053168 bytes, checksum: f171a30ed512369a6372b1d77a7bb854 (MD5) Previous issue date: 2018-02-23 / CNPq / Os poluentes atmosféricos das usinas termelétricas afetam negativamente a saúde humana, o solo, os corpos hídricos, as edificações, a flora e a fauna. Assim, essa forma de geração de energia elétrica, gera efluentes causadores de danos ao meio ambiente, trazendo impactos ambientais negativos. Neste sentido, o objetivo desse estudo foi avaliar os impactos ambientais causados pelo funcionamento de uma Usina Termelétrica localizada na região metropolitana de Campina Grande-PB. Através de um estudo de campo, de caráter exploratório foi empregado variadas metodologias para identificar as espécies da ornitofauna local, inventariar as espécies arbóreas e avaliar as trocas gasosas vegetais, além de utilizar de sensores ambientais pata determinar os níveis instantâneos dos compostos químicos CO2, CO, SO2, ruídos, temperatura do ar, umidade relativa do ar, temperatura de ponto de orvalho, velocidade do vento e luminescência vegetais, do entorno da Usina Termelétrica Energética Borborema S.A e de uma área amostral; e, através do software Aermod View, simular as concentrações das dispersões das fontes emissoras da Usina Termelétrica. Com isso, registrou-se vinte e nove espécies de aves, pertencentes a 21 famílias; e, para no inventário arbóreo, as principais espécies encontradas foram Combretum glaucocarpum, Croton sonderianus, Aspidosperma pyrifolium e Mimosa tenuiflora; quanto as análises das trocas gasosas realizadas pelo LCpro+, verificou-se que os valores máximos de transpiração foi registrado no ponto (P600), sendo a espécie Ziziphus joazeiro responsável pelo maior valor registrado; em relação ao uso dos sensores ambientais para monitorar a qualidade do ar, atestou-se ser uma ferramenta fundamental para verificar alterações na ambiência do entorno da Termelétrica Borborema S.A.; na modelagem com Aermod View, verificou-se que nas concentrações de NO2, os índices atingiram cerca de cinco vezes maior que o padrão primário estabelecido pelo CONAMA 03/90. Desta maneira, os resultados associados aos procedimentos metodológicos utilizados em conjunto, caracterizam-se como eficazes para avaliação e monitoramento de impactos ambientais para instalação e funcionamento de Termelétricas e demais indústrias poluidoras. / The air pollutants of thermoelectric power plants negatively affect human health, soil, water bodies, buildings, flora and fauna. Thus, this form of electric energy generation, generates effluents that cause damages to the environment, bringing negative environmental impacts. In this sense, the objective of this study was to evaluate the environmental impacts caused by the operation of a Thermoelectric Plant located in the metropolitan region of Campina Grande-PB. Through an exploratory field study, a variety of methodologies were used to identify the species of the local ornitofauna, to inventory the tree species and to evaluate the vegetal gas exchanges, besides using environmental sensors to determine the instantaneous levels of the chemical compounds CO2, CO, SO2, noise, air temperature, relative air humidity, dew point temperature, wind speed and plant luminescence, in the surroundings of Usina Termelétrica Energética Borborema S.A. and a sample area; and, through the Aermod View software, to simulate the dispersion concentrations of the sources emitting the Thermoelectric Plant. Thus, twenty-nine bird species belonging to 21 families were recorded; and, for the tree inventory, the main species found were Combretum glaucocarpum, Croton sonderianus, Aspidosperma pyrifolium and Mimosa tenuiflora; as well as the analyzes of the gas exchanges performed by LCpro +, it was verified that the maximum values of transpiration were recorded at the point (P600), and the Ziziphus joazeiro species was responsible for the highest recorded value; in relation to the use of environmental sensors to monitor air quality, was proved to be a fundamental tool to verify changes in the environment of the Borborema thermoelectric plant S.A.; in the modeling with Aermod View, it was verified that in the concentrations of NO2, the indexes reached about five times greater than the primary standard established by CONAMA 03/90. In this way, the results associated to the methodological procedures used together, are characterized as effective for evaluation and monitoring of environmental impacts for the installation and operation of Thermoelectric and other polluting industries.
33

Monitoring And Modeling To Estimate Hydrogen Sulfide Emissions And Dispersion From Florida Construction And Demolition Landfills To Construct Odor Buffering Distances

Bolyard, Steven Jeffrey 01 January 2012 (has links)
Emissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida’s population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide them with an objective and scientifically defensible means to establish odor buffer zones around C & D landfills. A technique for estimating methane (and odorous gas) emissions from municipal solid waste (MSW) landfills was recently developed by researchers at the University of Central Florida. This technique was based on measuring hundreds of ambient methane concentrations near the surface of the landfill, and combining that data with matrix inversion mathematics to back-solve the dispersion equations. The technique was fully documented in two peer-reviewed journal articles. This project extends that methodology. In this work the author measured ambient H2S concentrations at various locations in a C & D landfill, and applied those same matrix inversion techniques to determine the H2S emission rates from the landfill. The emission rates were then input into the AERMOD dispersion model to determine H2S odor buffer distances around the landfill. Three sampling trips to one C & D landfill were undertaken, data were taken, and the modeling techniques were applied. One problem encountered was that H2S emissions from C & D landfills are typically about 1000 times smaller than methane emissions (from MSW landfills). Thus, H2S iv ambient concentrations often are near the detection limits of the instruments, and the data may not be as reliable. However, this approach could be used for any particular C & D landfill if the appropriate amount of data were available to characterize its emissions with some certainty. The graphical tool developed in this work shows isopleths of "H2S" concentrations at various distances, and color codes the isopleths into a "green-yellow-red" scheme (analogous to a traffic signal) that depicts zones where private landowners likely will not detect odors, where they may experience some odors, or where they likely will experience odors. The "likelihood" can be quantified by selecting the Nth highest hourly concentrations in one year to form the plot. In this study, N was conservatively selected as 8. Requiring that concentrations be at or below the 8 th highest concentration in a year corresponds to a 99.9% probability of not exceeding that concentration at that distance in any future year. The graphical tool can be applied to any C & D landfill but each landfill is different. So this technique depends on having a fairly good estimate of the rate of emissions of H2S from the landfill in question, and at least one year’s worth of hourly meteorological data (wind speed, direction, and stability class) that is representative of the landfill location. The meteorological data can be obtained with relative ease for most locations in Florida; however, the emission data must be obtained from on-site measurements for any given landfill.
34

Particulate matter emissions from commercial beef cattle feedlots in Kansas

Bonifacio, Henry F. January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ronaldo G. Maghirang / Large cattle feedlots in Kansas are often considered to be large sources of particulate matter (PM), including PM with equivalent aerodynamic diameter of 10 micrometers or less (PM[subscript]10). To control PM emissions from cattle feedlots, water sprinkler systems can be implemented; however, limited data are available on their PM control efficiency. This research was conducted to determine the control efficiency of a water sprinkler system in reducing PM[subscript]10 emission from a cattle feedlot. This was accomplished by monitoring the PM[subscript]10 concentrations, with tapered element oscillating microbalance (TEOM™) PM[subscript]10 monitors, at the upwind and downwind boundaries of a cattle feedlot (KS1) from January 2006 to July 2009. The feedlot was equipped with a sprinkler system that can apply up to 5 mm of water per day. It had approximately 30,000 head of beef cattle and total pen area of approximately 50 ha. The control efficiency of the sprinkler system was determined by considering the PM[subscript]10 data during sprinkler on/off events, i.e., the sprinkler system was operated (on) for at least one day and either followed or preceded by at least one day of no water sprinkling (off). For each of the selected sprinkler on/off events, the percentage reduction in net PM[subscript]10 concentration was calculated and considered to be a measure of the control efficiency. Net PM[subscript]10 concentration was defined as the difference between downwind and upwind PM[subscript]10 concentrations. The control efficiency for PM[subscript]10 ranged from 32% to 80%, with an overall mean of 53% based on 24-h PM[subscript]10 values for 10 sprinkler on/off events. In general, the effect of the water sprinkler system in reducing net PM[subscript]10 concentration lasted for one day or less. The percentage reduction in net PM[subscript]10 concentration at KS1 due to rainfall events was also determined using a similar approach. In addition, a second cattle feedlot (KS2) that was not equipped with a sprinkler system and with approximately 25,000 head of beef cattle and 68 ha pen area was considered. Percentage reductions in net PM[subscript]10 concentrations due to rainfall events were mostly in the range of 60% to almost 100% for both feedlots, with overall means of 75% for KS1 and 74% for KS2. The effects of rainfall events (with rainfall amounts > 10 mm/day) lasted for three to seven days, depending on rainfall amount and intensity. Limited data are also available on PM[subscript]10 emission rates from cattle feedlots in Kansas. This research quantified PM[subscript]10 emission rates from the two feedlots (KS1 and KS2) and a third cattle feedlot (KS3) in Kansas by using inverse dispersion modeling with the AMS/EPA Regulatory Model (AERMOD), which is the US EPA preferred regulatory atmospheric dispersion model. PM[subscript]10 emission rates were back-calculated using the resulting PM[subscript]10 concentrations modeled by AERMOD, together with measured PM[subscript]10 concentrations (24 months of data for KS1 and KS2, 6 months of data for KS3). Overall mean PM[subscript]10 emission fluxes for the 2-year period were 1.29 g/m[superscript]2-day (range: 0.04 – 4.98 g/m[superscript]2-day) for KS1, 1.03 g/m[superscript]2-day (range: 0.07 – 4.52 g/m[superscript]2-day) for KS2, and 2.48 g/m[superscript]2-day (6-months; range: 0.05 – 5.00 g/m[superscript]2-day) for KS3. The corresponding mean PM[subscript]10 emission factors were 21, 29, and 48 kg/1,000 hd-day for KS1, KS2, and KS3, respectively. The emission factors for KS1 and KS2 were considerably smaller than the published US EPA emission factor for cattle feedlots (i.e., 42 kg/1000 hd-day). The emission factor for KS3 was slightly greater than the US EPA emission factor; however, it was a biased estimate because it was based only on a six-month period.
35

Modeling of Indoor Environment and Ammonia Emission, Distribution, and Dispersion Within and From Manure-Belt Layer Houses

Tong, Xinjie 08 July 2019 (has links)
No description available.

Page generated in 0.0409 seconds