• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 17
  • Tagged with
  • 111
  • 63
  • 45
  • 38
  • 32
  • 25
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Movimentação de malhas computacionais para aplicações tridimensionais em aerodinâmica não estacionária

Marcos Paulo Halal Lombardi 06 July 2015 (has links)
A previsão acurada de fenômenos aerodinâmicos não estacionários tem cada vez mais dependido do emprego de técnicas de Mecânica dos Fluidos Computacional (CFD). A aplicação de tais técnicas em problemas não estacionários depende crucialmente de tecnologias de geração de malha que, usualmente, são processos bastante lentos. Para contornar esta limitação, várias metodologias têm sido desenvolvidas a fim de calcular a dinâmica geométrica do problema físico sem gerar novamente uma malha computacional por completo. Neste sentido, este trabalho apresenta um estudo de técnicas eficientes de geração e movimentação de malhas computacionais para simulação não estacionária em CFD, com aplicações em Aeroelasticidade. Para este propósito, é implementada uma abordagem de movimentação de malhas baseada em Funções de Base Radial (RBF). Nesta metodologia, os deslocamentos dos pontos de malha na superfície da estrutura (móvel) são propagados para os pontos volumétricos (interiores), sem alterar a topologia da malha. Este trabalho conduz uma análise comparativa do emprego de diversos tipos de RBF na movimentação de malhas de níveis de refinamento diferentes, bidimensionais e tridimensionais, no que diz respeito à qualidade da malha deformada resultante. Além disso, aborda estratégias de movimentação e sua influência na qualidade de malha gerada. Como aplicação, é conduzida simulação aerodinâmica computacional com código BREXP3D. Este código utiliza formulação de mecânica dos fluidos não estacionária compressível e não viscosa (equações de Euler), implementada numericamente via método de diferenças finitas, o que exige malhas hexaédricas estruturadas. Este trabalho implementa condições de contorno para simulação de asa tridimensional em malhas monobloco e conduz simulação aerodinâmica estacionária em regime transônico, comparando com resultados experimentais. Problemas de malha e convergência não permitiram executar com sucesso a simulação aerodinâmica computacional não estacionária.
42

Development of methodologies of aeroelastic analysis for the design of flexible aircraft wings

Marcos Cesar Ruggeri 09 December 1201 (has links)
This work deals with several computational methodologies for the aeroelastic study of flexible aircraft wings on a preliminary design phase. An in-house vortex lattice method code named VLM4FW has been implemented with correction of sidewash and backwash effects to take into account the aeroelastic deformation of the wing in bending and torsion. In addition, corrections on the spanwise distribution of induced drag based on the cross-flow energy in the wake have been included. This code has been also programmed to be coupled in a co-simulation scheme with Abaqus for aeroelastic geometrical non-linear simulations and compute steady flight loads. Then, based on the deformed wing configuration new natural frequencies and mode shapes are extracted in MSC.Nastran with the solution sequence SOL 103. Flutter studies are next performed using the ZONA6 g-Method in ZAERO to analyze the dynamic aeroelastic instability and evaluate the results compared to the undeformed initial wing shape. Several case studies have been adopted to validate the VLM4FW program with rigid and flexible wings, such as the AE-249 and GNBA aircraft. Depending on the wing aspect ratio and flexibility, the results obtained give a clear idea of how important is the deformed configuration for the study of dynamic aeroelastic instabilities. The fact of considering the initial wing shape to perform a flutter analysis can lead to large errors in the estimated critical speeds, and even worse, overestimate the real values. Flutter analyses based on geometrical nonlinear deformed wings are assumed to be conservative for the preliminary design condition and are expected to provide better results as technological advances introduce higher aspect ratios on very flexible wings.
43

Modelagem e análise de uma asa piezoaeroelástica para geração de energia / Modeling and analysis of a piezoaeroelastic wing for power generation

José Maria, Marcos 17 December 2010 (has links)
A redução do consumo de energia dos sistemas eletrônicos, fez com que a pesquisa de novas fontes de energia para alimentar estes dispositivos tivesse enorme importância na última década. Algumas destas fontes são provenientes da conversão de energia de vibrações mecânicas em energia elétrica. Veículos aéreos não tripulados (UAVs) e micro veículos aéreos (MAVs) constituem uma aplicação importante para utilização de geradores de energia baseados em vibrações. Este trabalho tem seu foco na conversão de oscilações aeroelásticas em eletricidade utilizando o efeito piezelétrico direto. Um modelo numérico piezoaeroelasticamente acoplado, proveniente da associação de um modelo por elementos finitos eletromecânico e um modelo aerodinâmico não estacionário é apresentado. Uma asa geradora de energia composta por uma subestrutura metálica e piezocerâmicas embutidas é modelada. Apresentam-se como resultados, saídas elétricas (tensão, corrente e potência elétrica) e mecânicas no domínio do tempo. Uma carga resistiva é assumida no domínio elétrico do problema. Uma rajada discreta do tipo \'1-cos\' é assumida para várias velocidades do escoamento e valores de resistências elétricas, utilizando eletrodos contínuos e segmentados. Aponta que os melhores resultados foram obtidos com a utilização de eletrodos segmentados e que em razão do melhor acoplamento eletromecânico, obtêm-se um maior efeito shunt damping, um aumento na velocidade de flutter (1 m/s neste trabalho) e uma maior geração de potência. / Reducing the power consumption of electronic systems, has led the research for new sources of energy to power these devices have great importance in the last decade. Some of these sources are from the conversion of energy from mechanical vibrations into electrical energy. Unmanned Aerial Vehicles (UAVs) and Micro Air Vehicles (MAVs) are an important application for use of vibration energy harvesting. This work focuses on conversion of aeroelastic oscillations into electricity using piezoelectric direct effect. A numerical model coupled piezoaeroelastically derived from the combination of an electro-mechanical finite element model and an unsteady aerodynamic model is presented. A power generator wing consists of a metal substructure and embedded piezoceramic is modeled. They appear as results, electrical outputs (voltage, current and electric power) and mechanical time domain. A resistive load is assumed in the electric domain of the problem. A discrete gust of shape \'1-cos\' is taken for various flow velocities and values of electrical resistances, using continuous and segmented electrodes. Indicates that the best results were obtained with the use of segmented electrodes and because of better electromechanical coupling, we obtain a higher shunt damping effect, an increase flutter speed (1 m/s in this work) and greater power generation.
44

Identificação modal de uma estrutura aeronáutica via algoritmo de realização de sistemas / Modal identification of an aeronautical structure via the eigensystem realization algorithm

Sczibor, Valdinei 27 September 2002 (has links)
A determinação de características dinâmicas de estruturas aeronáuticas é um assunto extremamente importante na indústria aeroespacial, principalmente devido à demanda contínua para estruturas mais leves e conseqüentemente mais flexíveis. Neste contexto, estruturas aeroespaciais precisam ser submetidas a alguma forma de verificação modal antes do vôo, para assegurar que a aeronave é livre de fenômenos aeroelásticos indesejáveis. Esta análise freqüentemente inclui a identificação experimental de características dinâmicas como freqüência natural, fatores de amortecimento e forma dos modos usando ensaio modal. Neste trabalho foi realizado um ensaio de vibração no solo em uma asa metálica da aeronave Neiva Regente para obtenção das funções resposta em freqüência da estrutura. O método de identificação utilizado para este estudo é o Algoritmo de Realização de Sistemas – ERA. É um método de identificação considerado eficiente e poderoso, pois é capaz de identificar estruturas que apresentem comportamento dinâmico complexo. O algoritmo foi validado através de uma simulação de um modelo hipotético e de dados experimentais de uma viga de alumínio. Os resultados experimentais, porém, apresentam modos computacionais que devem ser eliminados. Para tanto foram utilizados três índices de confiança para qualificar os resultados, sendo estes: Colinearidade de Fase Modal Ponderada (MPCW), Coerência da Amplitude Modal Estendida (EMAC) e Indicador de Consistência Modal (CMI). Os modos que apresentaram melhores índices de confiança são considerados o resultado final do processo de identificação. Desta forma, o processo de identificação foi aplicado para a semi-asa da aeronave Neiva Regente. A identificação revelou-se mais difícil, basicamente devido à complexidade da estrutura somado-se a problemas de ruído, o que levou a um número pequeno de modos identificados / The determination of the dynamic characteristics of aircraft structures has become an extremely important issue in the aerospace industry, primarily due to the continuous demand for lighter and consequently more flexible structures. In this context, most aerospace structural system must be subjected to some form of modal verification prior to flight in order to ensure that the aircraft is free from any dangerous aeroelastic instability phenomena. The verification procedure often includes the experimental identification of structural characteristics such as the natural frequency, damping factors and normal modes using modal testing. In this work, a ground vibration testing (GVT) of a metallic wing of the Neiva Regente aircraft was accomplished in order to assess the frequency response functions. The basic identification method used for this study is the Eigensystem Realization Algorithm – ERA. It is an identification method, which is considered efficient and powerful, because it is capable to identify structures that present complex dynamic behaviour. The algorithm was valited through data obtained from a simulation of a hypothetical model and dynamic measurement accomplished in an aluminium beam. The experimental results, nevertheless, present computacional modes that must be removed from the model. Three confidence factors were used to qualify the results, namely the Modal Phase Collinearity – Weighted (MPCW), Extended Modal Amplitude Coherence (EMAC) and Consistent-Mode Indicator (CMI). The modes that presented higher confidence factor values were considered as the final result of the identification process. Then, the identificatin process was applied to a semi-wing of the Neiva Regente aircraft. This case has revealed a much harder identification procedure, where the complexity of the structure plus noisy data have led to a small number of identified modes
45

Otimização de parâmetros de controladores difusos para estruturas inteligentes / Parameter optimization of fuzzy controllers for smart structures

Gruppioni, Édson Mulero 23 April 2003 (has links)
As estruturas aeronáuticas estão sujeitas a diversas solicitações, devido principalmente às interações com o escoamento aerodinâmico, que podem causar distúrbios e vibrações, comprometendo seu desempenho. Diversas pesquisas vêm sendo realizadas para solucionar estes problemas. Dentre elas está o uso de atuadores e sensores piezelétricos integrados na estrutura, que juntamente com um sistema de controle passa a ser denominada estrutura inteligente, a qual promove o controle ativo de vibrações garantindo um aumento no desempenho. O objetivo deste trabalho é obter parâmetros ótimos de um controlador não convencional baseado na lógica difusa para controle de vibrações em uma viga com atuadores e sensores piezelétricos. A viga e elementos piezelétricos são modelados pelo método de elementos finitos utilizando o princípio variacional eletromecânico. O sistema de controle difuso, o qual está se tornando amplamente utilizado principalmente devido à sua capacidade de representar sistemas não lineares e complexos, é baseado nos modelos difusos de Mamdani e Takagi-Sugeno-Kang. A otimização é feita através de algoritmo genético que é um processo de procura probabilística baseado nas leis de seleção natural influenciadas pelas teorias de Charles Darwin. São otimizados os valores dos ganhos de controle, bem como os suportes dos conjuntos difusos da base de conhecimento. São feitas comparações com o controlador difuso obtido por processo de ajuste manual. / Aeronautical structures are subject to a variety of loads, due mainly to the iteration with the aerodynamic flow that can present disturbances, compromising their performance. Various researches have been carried out to solve these problems. Among them, the use of piezoelectric actuators and sensors integrated to the structure, jointly with a control system, the so-called smart structure technology, has been seen with good potentiaI. A smart structure promotes active vibration control, guaranteeing a performance increase. The objective of this work is to obtain optimal control parameters of a non-conventional vibration controller based on the fuzzy logic. A smart beam with piezoelectric actuators and sensors, that has been modeled by the finite element method, has been used to controI. The fuzzy control, which is becoming broadly utilized, mainly due to its capacity to represent complex and non-linear systems, is based in Mamdani and Takagi-Sugeno-Kang fuzzy models. The optimization scheme is based on genetic algorithms, a methodology inspired on the natural selection laws influenced by the Darwin\'s theories. Gains values and membership functions are optimized. Comparisons with the fuzzy controller achieved by trial and error parameters tuning are presented.
46

Otimização de parâmetros de controladores difusos para estruturas inteligentes / Parameter optimization of fuzzy controllers for smart structures

Édson Mulero Gruppioni 23 April 2003 (has links)
As estruturas aeronáuticas estão sujeitas a diversas solicitações, devido principalmente às interações com o escoamento aerodinâmico, que podem causar distúrbios e vibrações, comprometendo seu desempenho. Diversas pesquisas vêm sendo realizadas para solucionar estes problemas. Dentre elas está o uso de atuadores e sensores piezelétricos integrados na estrutura, que juntamente com um sistema de controle passa a ser denominada estrutura inteligente, a qual promove o controle ativo de vibrações garantindo um aumento no desempenho. O objetivo deste trabalho é obter parâmetros ótimos de um controlador não convencional baseado na lógica difusa para controle de vibrações em uma viga com atuadores e sensores piezelétricos. A viga e elementos piezelétricos são modelados pelo método de elementos finitos utilizando o princípio variacional eletromecânico. O sistema de controle difuso, o qual está se tornando amplamente utilizado principalmente devido à sua capacidade de representar sistemas não lineares e complexos, é baseado nos modelos difusos de Mamdani e Takagi-Sugeno-Kang. A otimização é feita através de algoritmo genético que é um processo de procura probabilística baseado nas leis de seleção natural influenciadas pelas teorias de Charles Darwin. São otimizados os valores dos ganhos de controle, bem como os suportes dos conjuntos difusos da base de conhecimento. São feitas comparações com o controlador difuso obtido por processo de ajuste manual. / Aeronautical structures are subject to a variety of loads, due mainly to the iteration with the aerodynamic flow that can present disturbances, compromising their performance. Various researches have been carried out to solve these problems. Among them, the use of piezoelectric actuators and sensors integrated to the structure, jointly with a control system, the so-called smart structure technology, has been seen with good potentiaI. A smart structure promotes active vibration control, guaranteeing a performance increase. The objective of this work is to obtain optimal control parameters of a non-conventional vibration controller based on the fuzzy logic. A smart beam with piezoelectric actuators and sensors, that has been modeled by the finite element method, has been used to controI. The fuzzy control, which is becoming broadly utilized, mainly due to its capacity to represent complex and non-linear systems, is based in Mamdani and Takagi-Sugeno-Kang fuzzy models. The optimization scheme is based on genetic algorithms, a methodology inspired on the natural selection laws influenced by the Darwin\'s theories. Gains values and membership functions are optimized. Comparisons with the fuzzy controller achieved by trial and error parameters tuning are presented.
47

Estudo numérico de uma asa com controle ativo de flutter por realimentação da pressão medida num ponto / Numeric study of a wing with flutter active control by feedback of the pressure measured in one point

Tiago Francisco Gomes da Costa 06 July 2007 (has links)
Neste trabalho é desenvolvido um sistema de controle ativo para supressão de flutter de uma asa utilizando-se sensores de pressão em pontos estratégicos de sua superfície. O flutter é um fenômeno aeroelástico que caracteriza um acoplamento instável entre estrutura flexível e escoamento aerodinâmico não estacionário. Quando a modificação da estrutura ou da aerodinâmica da asa não é viável, o uso de sistemas de controle passa a ser uma boa opção. Para o desenvolvimento do sistema de controle proposto, é primeiramente desenvolvido um modelo numérico de asa flexível. Com esse modelo numérico e a pressão na superfície da asa medida em certos pontos e realimentada ao sistema controlador, são determinadas correções no ângulo de uma superfície de controle no bordo de fuga. A tentativa de se utilizar um sistema de controle bem simples, com o uso de um único sensor de pressão, mostra a viabilidade de se implementar um sistema deste tipo em aeronaves reais. Esse sistema pode tornar-se uma alternativa aos desenvolvidos até então com o uso de acelerômetros, além de ser útil em sistemas onde se procura prever o estol e observar o comportamento da distribuição de pressão sobre a asa em vôo. / In this work, a wing flutter suppression active control system using pressure sensors in strategic points is developed. Flutter is an aeroelastic phenomenon characterized by an unstable coupling of a flexible structure and a non-stationary aerodynamic flow. When changes of the wing structure or of the aerodynamics are not viable, the use of automatic control systems becomes a good option. For the developing of the suggested control system, a numeric model of a finite flexible wing is firstly done. With this model and the pressure over the wing surface read in certain points and fedback to the control system, changes of the control surface angle on the trailing edge are determined. The attempt to use a simple control system, with a unique pressure sensor shows the viability of implanting this kind of system in real aircrafts. This system may become an alternative to those developed until now, using accelerometers. Yet, it could be useful, in systems where it is necessary to predict stall and observe the pressure load behavior over the wing in flight.
48

Desenvolvimento de uma balança dinâmica de três graus de liberdade para estudo dos efeitos de flexo-torção em edifícios altos submetidos à ação do vento / The development of a three degree of freedom dynamic balance for the study of the wind induced bending and torsional effects in tall buildings

Oliveira, Mário Gustavo Klaus January 2009 (has links)
Medições realizadas em edifícios altos, em escala real, têm mostrado que o carregamento devido à ação do vento pode causar importantes efeitos de torção. A atual tendência de construção de prédios com formas e sistemas estruturais mais complexos promove a acentuação das excentricidades entre o centro de massa, centro elástico e o ponto de aplicação instantânea de forças aerodinâmicas. Soma-se a isso o fato de os edifícios altos modernos estarem se tornando cada vez mais esbeltos e leves, o que baixa a velocidade (do vento) de disparo de fenômenos como galope e drapejamento torcional, fazendo com que esta velocidade se aproxime cada vez mais das velocidades do vento consideradas nos projetos. Frente a isso, os efeitos dinâmicos, tanto de flexão como de torção, induzidos pelo vento em edifícios altos representam uma importante consideração nos projetos de estruturas modernas. Os métodos analíticos para determinação da resposta de edifícios altos submetidos à ação do vento, hoje disponíveis, não levam a resultados satisfatórios em casos de geometrias não regulares, bem como não contemplam efeitos torsionais. Seu uso também não é recomendado no caso de estruturas muito flexíveis, cujo movimento afeta as forças aerodinâmicas que nelas atuam. Nessas situações, a melhor opção para os engenheiros é um estudo mais detalhado dos efeitos do vento sobre a estrutura, através de ensaios de modelos em escala reduzida em túneis de vento, que simulem as características do vento natural. O objetivo deste trabalho é o desenvolvimento de um mecanismo que permita a obtenção da resposta de edifícios altos frente à ação do vento, a partir de ensaios em túnel de vento com modelos em escala reduzida. Busca-se determinar a resposta em termos de suas componentes médias e flutuantes. Admite-se que a parcela dinâmica contempla os dois modos fundamentais de vibração livre em flexão, ortogonais entre si e aproximados de forma linear, e o primeiro modo de torção, aproximado de forma constante. As simplificações adotadas permitem que os modelos tenham baixa complexidade de projeto e construção, diminuindo, assim, o custo da modelagem e tornando o processo experimental mais ágil. Para validar os resultados obtidos com a utilização do mecanismo desenvolvido foram realizados ensaios em escala reduzida do CAARC Standard Tall Building, edifício alto tomado como padrão para calibração de técnicas de modelagem aeroelástica, no Túnel de Vento Professor Joaquim Blessmann, da Universidade Federal do Rio Grande do Sul. Os resultados obtidos foram comparados com os valores publicados por outros pesquisadores e com resultados determinados a partir de ensaios de medidas de pressões em alta freqüência. A coerência entre os valores comparados permitiu concluir que o equipamento simula satisfatoriamente o comportamento dinâmico de edifícios altos submetidos à ação do vento, mesmo perante fenômenos aeroelásticos, como a ressonância por desprendimento alternado de vórtices. A partir dos resultados verificou-se também a importância dos efeitos dinâmicos de torção induzidos pela ação do vento, e a necessidade de que sejam apropriadamente considerados nos projetos / Measurements performed in full-scale high rise buildings have shown that wind loading may cause important torsional effects. The current trend of building construction, with new shapes and complex structural systems promotes an increase in the distances (eccentricities) among the center of mass, elastic center and the instantaneous point of application of the resulting wind loads. Furthermore, modern tall buildings are becoming increasingly light and slender, diminishing the trigger wind speed of some phenomena such as galloping and torsional flutter, bringing these velocities closer to the design wind speeds. Therefore, wind induced bending and torsional dynamic effects in tall buildings play an important role in the design of modern structures. The current analytical methods for the response determination of tall buildings under wind loading do not lead to reliable results for the non regular building shapes, as well as do not consider torsional effects. Also, its use is not recommended for the case of very flexible structures, where the structure´s own motion may affect the aerodynamic forces acting on it. In these situations, the best option for engineers is a more detailed study of the wind effects, through boundary layer wind tunnels. The aim of this study is the development of a device that allows the determination of the response of tall buildings under wind loading, through wind tunnel tests with reduced scale models. The goal is the determination of the responses in terms of its mean and fluctuating components. It is assumed that the dynamic parcel contemplates the two fundamental bending modes of vibration, orthogonal and linear, as well as the torsional mode, which is assumed constant along the height. The adopted simplifications allow for a low complexity in the process of model design and construction as well as for a very low modeling cost, making more efficient the whole testing process. To validate the device, tests were performed with a reduced scale model of the CAARC Standard Tall Building, which is taken as a standard for the calibration of aeroelastic modeling techniques, in Prof. Joaquim Blessmann boundary layer wind tunnel of the Federal University of Rio Grande do Sul. The obtained results were compared with other researchers' values as well as with results obtained from pressure measurements, in a rigid model. The agreement among the compared values allows the conclusion that the device simulates satisfactorily well the dynamic behaviour of high rise buildings under wind loading, even for aeroelastic phenomena such as the resonance due to vortex shedding. It was also verified the importance of the wind induced torsional effects and the need for its proper consideration in the design process.
49

Desenvolvimento de uma balança dinâmica de três graus de liberdade para estudo dos efeitos de flexo-torção em edifícios altos submetidos à ação do vento / The development of a three degree of freedom dynamic balance for the study of the wind induced bending and torsional effects in tall buildings

Oliveira, Mário Gustavo Klaus January 2009 (has links)
Medições realizadas em edifícios altos, em escala real, têm mostrado que o carregamento devido à ação do vento pode causar importantes efeitos de torção. A atual tendência de construção de prédios com formas e sistemas estruturais mais complexos promove a acentuação das excentricidades entre o centro de massa, centro elástico e o ponto de aplicação instantânea de forças aerodinâmicas. Soma-se a isso o fato de os edifícios altos modernos estarem se tornando cada vez mais esbeltos e leves, o que baixa a velocidade (do vento) de disparo de fenômenos como galope e drapejamento torcional, fazendo com que esta velocidade se aproxime cada vez mais das velocidades do vento consideradas nos projetos. Frente a isso, os efeitos dinâmicos, tanto de flexão como de torção, induzidos pelo vento em edifícios altos representam uma importante consideração nos projetos de estruturas modernas. Os métodos analíticos para determinação da resposta de edifícios altos submetidos à ação do vento, hoje disponíveis, não levam a resultados satisfatórios em casos de geometrias não regulares, bem como não contemplam efeitos torsionais. Seu uso também não é recomendado no caso de estruturas muito flexíveis, cujo movimento afeta as forças aerodinâmicas que nelas atuam. Nessas situações, a melhor opção para os engenheiros é um estudo mais detalhado dos efeitos do vento sobre a estrutura, através de ensaios de modelos em escala reduzida em túneis de vento, que simulem as características do vento natural. O objetivo deste trabalho é o desenvolvimento de um mecanismo que permita a obtenção da resposta de edifícios altos frente à ação do vento, a partir de ensaios em túnel de vento com modelos em escala reduzida. Busca-se determinar a resposta em termos de suas componentes médias e flutuantes. Admite-se que a parcela dinâmica contempla os dois modos fundamentais de vibração livre em flexão, ortogonais entre si e aproximados de forma linear, e o primeiro modo de torção, aproximado de forma constante. As simplificações adotadas permitem que os modelos tenham baixa complexidade de projeto e construção, diminuindo, assim, o custo da modelagem e tornando o processo experimental mais ágil. Para validar os resultados obtidos com a utilização do mecanismo desenvolvido foram realizados ensaios em escala reduzida do CAARC Standard Tall Building, edifício alto tomado como padrão para calibração de técnicas de modelagem aeroelástica, no Túnel de Vento Professor Joaquim Blessmann, da Universidade Federal do Rio Grande do Sul. Os resultados obtidos foram comparados com os valores publicados por outros pesquisadores e com resultados determinados a partir de ensaios de medidas de pressões em alta freqüência. A coerência entre os valores comparados permitiu concluir que o equipamento simula satisfatoriamente o comportamento dinâmico de edifícios altos submetidos à ação do vento, mesmo perante fenômenos aeroelásticos, como a ressonância por desprendimento alternado de vórtices. A partir dos resultados verificou-se também a importância dos efeitos dinâmicos de torção induzidos pela ação do vento, e a necessidade de que sejam apropriadamente considerados nos projetos / Measurements performed in full-scale high rise buildings have shown that wind loading may cause important torsional effects. The current trend of building construction, with new shapes and complex structural systems promotes an increase in the distances (eccentricities) among the center of mass, elastic center and the instantaneous point of application of the resulting wind loads. Furthermore, modern tall buildings are becoming increasingly light and slender, diminishing the trigger wind speed of some phenomena such as galloping and torsional flutter, bringing these velocities closer to the design wind speeds. Therefore, wind induced bending and torsional dynamic effects in tall buildings play an important role in the design of modern structures. The current analytical methods for the response determination of tall buildings under wind loading do not lead to reliable results for the non regular building shapes, as well as do not consider torsional effects. Also, its use is not recommended for the case of very flexible structures, where the structure´s own motion may affect the aerodynamic forces acting on it. In these situations, the best option for engineers is a more detailed study of the wind effects, through boundary layer wind tunnels. The aim of this study is the development of a device that allows the determination of the response of tall buildings under wind loading, through wind tunnel tests with reduced scale models. The goal is the determination of the responses in terms of its mean and fluctuating components. It is assumed that the dynamic parcel contemplates the two fundamental bending modes of vibration, orthogonal and linear, as well as the torsional mode, which is assumed constant along the height. The adopted simplifications allow for a low complexity in the process of model design and construction as well as for a very low modeling cost, making more efficient the whole testing process. To validate the device, tests were performed with a reduced scale model of the CAARC Standard Tall Building, which is taken as a standard for the calibration of aeroelastic modeling techniques, in Prof. Joaquim Blessmann boundary layer wind tunnel of the Federal University of Rio Grande do Sul. The obtained results were compared with other researchers' values as well as with results obtained from pressure measurements, in a rigid model. The agreement among the compared values allows the conclusion that the device simulates satisfactorily well the dynamic behaviour of high rise buildings under wind loading, even for aeroelastic phenomena such as the resonance due to vortex shedding. It was also verified the importance of the wind induced torsional effects and the need for its proper consideration in the design process.
50

Modelo numérico para simulação da resposta aeroelástica de asas fixas. / Numerical model for the simulation of the aeroelastic response of fixed wings.

Guilherme Ribeiro Benini 28 June 2002 (has links)
Um modelo numérico para simulação da resposta aeroelástica de asas fixas é proposto. A estratégia adotada no trabalho é a de tratar a aerodinâmica e a dinâmica estrutural separadamente e então acoplá-las na equação de movimento. A caracterização dinâmica de uma asa protótipo é feita pelo método dos elementos finitos e a equação de movimento é escrita em função das coordenadas modais. O carregamento aerodinâmico não-estacionário é determinado pelo método de malha de vórtices. A troca de informações entre as malhas estrutural e aerodinâmica é feita através do método de interpolação por splines de superfície e a equação de movimento é resolvida iterativamente no domínio do tempo, utilizando-se um método preditor-corretor. As teorias de aerodinâmica, dinâmica estrutural e do acoplamento entre elas são apresentadas separadamente, juntamente com os respectivos resultados obtidos. A resposta aeroelástica da asa protótipo é representada por curvas de deslocamentos modais em função do tempo para várias velocidades de vôo e a ocorrência de flutter é verificada quando estas curvas divergem (i.e. as amplitudes aumentam progressivamente). Transformadas de Fourier destas curvas mostram o acoplamento de freqüências característico do fenômeno de flutter. / A numerical model for the simulation of the aeroelastic response of fixed wings is proposed. The methodology used in the work is to treat the aerodynamic and the structural dynamics separately and then couple them in the equation of motion. The dynamic characterization of a prototype wing is done by the finite element method and the equation of motion is written in modal coordinates. The unsteady aerodynamic loads are predicted using the vortex lattice method. The exchange of information between the aerodynamic and structural meshes is done by the surface splines interpolation scheme, and the equation of motion is solved interactively in the time domain, employing a predictor-corrector method. The aerodynamic and structural dynamics theories, and the methodology to couple them, are described separately, together with the corresponding obtained results. The aeroelastic response of the prototype wing is represented by time histories of the modal coordinates for different airspeeds, and the flutter occurrence is verified when the time histories diverge (i.e. the amplitudes keep growing). Fast Fourier Transforms of these time histories show the coupling of frequencies, typical of the flutter phenomenon.

Page generated in 0.0643 seconds