• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Validation of a Numerical Tool for the Aeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role. The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks. Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered. Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method. The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk. / QC 20110324 / Turbopower / AROMA
2

Development and Validation of a Numerical Tool for theAeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
<p>In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role.</p><p>The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks.</p><p>Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered.</p><p>Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method.</p><p>The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk.</p> / Turbopower / AROMA
3

Développement des méthodes numériques et expérimentales pour la certification vibratoire des disques aubagés monoblocs / Development of the numerical and experimental methods for dynamic certification of integrally bladed disks

Cazenove, Jean de 25 June 2014 (has links)
Les roues aubagées de turbomachines sont soumises en fonctionnement `a des sollicitations statiqueset dynamiques, qui peuvent conduire `a des situations de fatigue vibratoire pour des excitationsau voisinage des fréquences de résonance. Ce probléme est aggravé par le désaccordage involontaire,auquel sont sujets les ensembles aubagés notamment du fait des dispersions de fabrication.L’objectif de ce travail de recherche est de proposer une stratégie mixte numérique et expérimentalepermettant de caractériser le comportement dynamique d’une roue d’essai au sein des statistiquesdécrivant une flotte simulée de moteurs en service, en vue de la certification vibratoire. Un modèle numérique fidèle basée sur l’acquisition optique d’une roue expérimentale a été développé; une série d’essais en laboratoire a permis de vérifier sa représentativité. L’exploitation de mesures réalisées en configuration moteur a montré une bonne cohérence globale des niveaux d’amplitude prédits à l’aidedu modèle fidèle. Enfin, la simulation du comportement d’une population de roues désaccordées à l’aide d’une approche probabiliste non-Paramétrique a permis de positionner l’amplitude de réponse maximale rencontrée sur la pièce d’essai par rapport à la valeur théorique obtenue par simulation. La stratégie proposée permet une prédiction des niveaux vibratoires maximaux pour une flotte de rouesen service. / Under operating conditions, turbomachinery blisks are subject to static and dynamic loads which mayresult in High-Cycle Fatigue situations when excited at the neighbourhood of resonant frequencies.Random mistuning, which affects blisks due to machining deviations, turns this issue even morecritical. The objective of the current study is to introduce a numerical-Experimental strategy allowingthe dynamic characterization of an experimental bladed disk with regard to the statistics representingthe simulated behaviour for a population of operating blisks. A high-Fidelity numerical model basedon the optical acquisition of an experimental blisk has been set up. Test series performed in labconditions allowed to verify its coherence. The comparison of the response amplitudes measuredunder operating conditions to the model predictions revealed an acceptable matching between testand simulation data. Finally, a non-Parametric probabilistic approach has been used to predict thetheoretical maximal amplification factor. The maximum amplification factor obtained by means ofsimulation was compared to the amplification factor of the test specimen. The strategy proposed inthis study allows maximum amplification factor predictions for a population of blisks
4

Aeromechanical Stability Augmentation Using Semi-Active Friction-Based Lead-Lag Damper

Agarwal, Sandeep 23 November 2005 (has links)
Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a ``dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.

Page generated in 0.0505 seconds