• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 400
  • 98
  • 68
  • 47
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 817
  • 204
  • 156
  • 91
  • 90
  • 76
  • 75
  • 67
  • 59
  • 59
  • 56
  • 52
  • 51
  • 48
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Aerosol Absorption And Source Characteristics Over Different Environments

Sindhu, Kapil Dev 05 1900 (has links)
Extremely fine liquid droplets or solid particles, those remain suspended in the air, are known as aerosols. They are produced by natural sources and anthropogenic activities. Several types of aerosols produced by different processes are present in the atmosphere and every type of aerosol species exhibit different types of physical and chemical properties. Though making up only a small fraction of atmospheric mass aerosols are capable of altering Earth’s climate by scattering and absorbing incoming solar radiation and absorbing outgoing radiation. Adding to the complexity, they can act as cloud condensation nuclei and modify cloud properties. Major objective of this thesis is to study absorption due to aerosols and factors controlling the absorbing efficiency of aerosols over various environments. We have demonstrated a new method to quantify the organic carbon in terms of optical depth. Our studies demonstrate large “anomalous” absorption in the UV wavelength region over several regions. Further investigations revealed that a major part of this additional absorption is contributed by organic carbon aerosols and partly due to dust aerosols. We show that it is possible to discriminate UV absorption by dust and organic carbon by making use of the fact that dust aerosols are much larger in size compared to organic aerosols. Examination of aerosol optical depth values measured at cities south of Saharan desert indicates high short wave absorption due to coarse mode aerosols probably dust. Even at low values of Angstrom wavelength exponent, which indicates the presence of large aerosols (e.g., dust over land), absorption was found reasonably high compared to that of pure dust. On the other hand, over regions in the northern part of the Sahara close to Europe, short wave absorption was found to be lower. The enhanced short wave absorption due to coarse particles is unexpected. It appears that the deposition of anthropogenic aerosols such as black carbon over dust aerosols is likely to be responsible for this enhanced short wave absorption. This is a typical example of how anthropogenic aerosols can modify the properties of natural aerosols. We have carried out source apportionment using backward air parcel trajectories by applying k-means method of clustering and obtained various aerosol terms corresponding to each cluster. We have selected three island sites and one site in the middle of Saharan desert for this study. High aerosol radiative forcing values are observed even over remote island locations. Our study demonstrates the role of aerosols transported from the main land in influencing the aerosol environment even over remote marine regions.
342

Characterization of Atmospheric Aerosols in Kathmandu, New Hampshire, and Texas: Carbonaceous, Isotopic, and Water-soluble Organic Composition

January 2011 (has links)
To improve the understanding of aerosol composition, sources, and spatial and temporal variations, atmospheric aerosols were characterized in three locations. Ambient aerosols were characterized using 24-hour samples collected from Kathmandu, Nepal (urban), New Hampshire (semi-rural) and Houston (urban). Results are reported in the main chapters. Chamber studies of secondary organic aerosols (SOA) formation from polycyclic aromatic hydrocarbons (PAHs) and the effects of in-situ SOA formation on atmospheric mercury oxidation are described in the appendices. Carbonaceous, ionic, and isotopic species in aerosols from Kathmandu identified local primary emissions, most likely vehicular exhaust as the most important aerosol sources. Carbonaceous aerosols collected in Kathmandu (24.5 μg C m -3 ) were much larger than those in New Hampshire (3.74 μg C m -3 ) during winter. Stable carbon isotope in aerosols of Kathmandu and New Hampshire were similar (Δδ 13 C ∠ 0.5[per thousand]) while stable nitrogen isotope were much lower in aerosols of Kathmandu (Δδ 15 N = 8.3[per thousand]). Aerosols in New Hampshire exhibited a large seasonal variation for carbonaceous aerosols, stable nitrogen isotope, and the aromatic fraction of water-soluble organic carbon (WSOC). Pure aliphatics (H-C) were the dominant functional group in WSOC. Results illustrate the importance of secondary aerosol sources throughout the year, with enhanced importance of primary sources during winter. Stable carbon isotope values suggest a consistent isotopic signature of carbonaceous aerosol sources, while the nitrogen isotope values indicate the variable nitrogenous sources and the strong influence of meteorological parameters (temperature and relative humidity) on nitrogen isotope fractionation. Characteristics of methoxyphenols (lignin macropolymers) in the ambient aerosols are reported for the first time using CuO oxidation method. The study illustrates the use of lignin oxidation products (LOPs) in aerosols as potential tracers of primary biological aerosol particles (PBAP). The methoxyphenols identified soil organic matter and altered woody angiosperms, with minor influence from soft tissues and gymnosperms as the important PBAP sources in mainly coarse particles in Houston atmosphere. Solvent-extracted methoxyphenols (lignin monomers) and anhydrosugars (levoglucosan, mannosan, and galactosan) in aerosols were either absent or very small, suggesting very limited biomass burning influence with any trace-level presence originating from long-range transport.
343

Characterisation of the chemical properties and behaviour of aerosols in the urban environment

Young, Dominique Emma January 2014 (has links)
Atmospheric aerosols have adverse effects on human health, air quality, and visibility and frequently result in severe pollution events, particularly in urban areas. However, the sources of aerosols and the processes governing their behaviour in the atmosphere, including those which lead to high concentrations, are not well understood thus limit our ability to accurately assess and forecast air quality. Presented here are the first long-term chemical composition measurements from an urban environment using an Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Organic aerosols (OA) were observed to account for a significant fraction (44%) of the total non-refractory submicron mass during 2012 at the urban background site in North Kensington, London, followed by nitrate (28%), sulphate (14%), ammonium (13%), and chloride (1%). The sources and components of OA were determined using Positive Matrix Factorisation (PMF) and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2), where HOA, COA, and SFOA were observed to be of equal importance across the year. The concentration of secondary OA increased during the summer yet the extent of oxidation, as defined by the oxygen content, showed no variability during the year. The main factors governing the diurnal, monthly, and seasonal trends observed in all organic and inorganic species were meteorological conditions, specific nature of the sources, and availability of precursors. Regional and transboundary pollution influenced total aerosol concentrations and high concentration events were observed to be governed by different factors depending on season. High-Resolution ToF-AMS measurements were used to further probe OA behaviour, where two SFOA factors were derived from PMF analysis in winter, which likely represent differences in burn conditions. In the summer an OA factor was identified, likely of primary origin, which was observed to be strongly associated with organic nitrates and anthropogenic emissions. This work uses instruments and techniques that have not previously been used in this way in an urban environment, where the results further the understanding of the chemical components of urban aerosols. Aerosol sources are likely to change in the future with increases in solid fuel burning as vehicular emissions decrease, with significant implications on air quality and health. Thus it is important to understand aerosol sources and behaviour in order to develop effective pollution abatement strategies.
344

A SPECTROPOLARIMETER FOR THE ANALYSIS OF ATMOSPHERIC AEROSOLS.

Elkins, William Patrick. January 1983 (has links)
No description available.
345

Optical characterization of Polar winter aerosols and clouds / La caractérisation optique des aérosols et des nuages pendant l’hiver polaire

Baibakov, Konstantin January 2014 (has links)
Résumé : L’Arctique est particulièrement sensible aux changements climatiques et a récemment subi des modifications majeures incluant une diminution dramatique de l’extension de la glace de mer. Notre capacité́ à modéliser et à potentiellement réduire les changements climatiques est limitée, en partie, par les incertitudes associées au forçage radiatif induit par les effets directs et indirects des aérosols, qui dépendent de notre compréhension des processus impliquant les nuages et les aérosols. La charge des aérosols est caractérisée par l’épaisseur optique des aérosols (AOD) qui est le paramètre radiatif extensif le plus important et l’indicateur régional du comportement des aérosols sans doute le plus décisif. Une de nos lacunes majeures dans la compréhension des aérosols arctiques est leur comportement durant l’hiver polaire. Cela est principalement dû au manque de mesures nocturnes d’AOD. Dans ce travail, on utilise des instruments (lidar et photomètre stellaire) installés en Arctique pour mesurer, respectivement, les profils verticaux des aérosols et une valeur intégrée dans la colonne (AOD) de ces profils. En outre, les données d’un lidar spatial (CALIOP) sont utilisées pour fournir un contexte pan-arctique et des statistiques saisonnières pour supporter les mesures au sol. Ces dernières ont été obtenues aux stations arctiques d’Eureka (80◦ N, 86◦ W) et de Ny Ålesund (79◦ N, 12◦ E) durant les hivers polaires de 2010-2011 et 2011-2012. L’importance physique des pe- tites variations d’amplitude de l’AOD est typique de l’hiver polaire en Arctique, mais suppose une vérification pour s’assurer que des artefacts ne contribuent pas à ces variations (par exemple un masque de nuage insuffisant). Une analyse des processus basée sur des événements (avec une résolution temporelle ≈ une minute) est essentielle pour s’assurer que les paramètres optiques et microphysiques extensifs (grossiers) et intensifs (par particules) sont cohérents et physiquement conformes. La synergie photomètre stellaire-lidar nous permet de caractériser plusieurs événements distincts au cours des périodes de mesures, en particulier : des aérosols, des cristaux de glace, des nuages fins et des nuages polaires stratosphériques (PSC). Dans l’ensemble, les modes fin (<1μm) et grossier (>1μm) de l’AOD obtenus par photométrie stellaire (τ[indice inférieur f] et τ[indice inférieur c]) sont cohérents avec leurs analogues produits à partir des profils intégrés du lidar. Cependant certaines inconsistances causées par des facteurs instrumentaux et environnementaux ont aussi été trouvées. La division de l’AOD du photomètre stellaire τ[indice inférieur f] et τ[indice inférieur c] a été davantage exploitée afin d’éliminer les épaisseurs optiques du mode grossier (le filtrage spectral de nuages) et, par la suite, de comparer τ[indice inférieur]f avec les AODs obtenues par le filtrage de nuages traditionnel (temporel). Alors que les filtrages temporel et spectral des nuages des cas étudiés au niveau des processus ont conduit à des résultats bons à modérés en termes de cohérence entre les données filtrées spectralement et temporellement (les épaisseurs optiques des photomètres stellaires et lidars étant toutes deux filtrées temporellement), les résultats saisonniers semblent être encore contaminés par les nuages. En imposant un accord en utilisant un second filtre, plus restrictif, avec un critère de ciel clair ("enveloppe minimale du nuage"), les valeurs saisonnières moyennes obtenues étaient de 0.08 à Eureka et 0.04 à Ny Ålesund durant l’hiver 2010-2011. En 2011-2012, ces valeurs étaient, respectivement, de 0.12 et 0.09. En revanche les valeurs d’épaisseur optique de CALIOP (estimées entre 0 et 8 km) ont légèrement diminué de 2010-2011 à 2011-2012 (0.04 vs. 0.03). // Abstract : The Arctic region is particularly sensitive to climate change and has recently undergone major alterations including a dramatic decrease of sea-ice extent. Our ability to model and potentially mitigate climate change is limited, in part, by the uncertainties associated with radiative forcing due to direct and indirect aerosol effects which in turn are dependent on our understanding of aerosol and cloud processes. Aerosol loading can be characterized by aerosol optical depth (AOD) which is the most important (extensive or bulk) aerosol radiative parameter and arguably the most important regional indicator of aerosol behavior. One of the most important shortcomings in our understanding of Arctic aerosols is their behavior during the Polar winter. A major reason for this is the lack of night-time AOD measurements. In this work we use lidar and starphotometry instruments in the Arctic to obtain vertically resolved aerosol profiles and column integrated representations of those profiles (AODs) respectively. In addition, data from a space-borne lidar (CALIOP) is used to provide a pan-Arctic context and seasonal statistics in support of ground based measurements. The latter were obtained at the Eureka (80 ◦ N, 86 ◦ W) and Ny Ålesund (79 ◦ N, 12 ◦ E) high Arctic stations during the Polar Winters of 2010-11 and 2011-12. The physical significance of the variation of the small-amplitude AODs that are typical of the Arctic Polar Winter, requires verification to ensure that artifactual contributions (such as incomplete cloud screening) do not contribute to these variations. A process-level event-based analysis (with a time resolution of ≈ minutes), is essential to ensure that extracted extensive (bulk) and intensive (per particle) optical and microphysical indicators are coherent and physically consistent. Using the starphotometry-lidar synergy we characterized several distinct events throughout the measurement period: these included aerosol, ice crystal, thin cloud and polar stratospheric cloud (PSC) events. In general fine (<1 μm ) and coarse (>1 μm )modeAODs from starphotometry ( τ[subscript f] and τ [subscript c] ) were coherent with their lidar analogues produced from integrated profiles : however several inconsistencies related to instrumental and environmental factors were also found. The division of starphotometer AODs into τ[subscript ]f and τ [subscript c] components was further exploited to eliminate coarse mode cloud optical depths (spectral cloud screening) and subsequently compare τ [subscript f] with cloud-screened AODs using a traditional (temporal based) approach. While temporal and spectral cloud screening case studies at process level resolutions yielded good to moderate results in terms of the coherence between spectrally and temporally cloud screened data (both temporally screened starphotometer and lidar optical depths), seasonal results apparently still contained cloud contaminated data. Forcing an agreement using a more restrictive, second-pass, clear sky criterion ("minimal cloud envelope") produced mean 2010-11 AOD seasonal values of 0.08 and 0.04 for Eureka and Ny Ålesund respectively. In 2011-12 these values were 0.12 and 0.09. Conversely, CALIOP AODs (0 to 8 km) for the high Arctic showed a slight decrease from 2010-2011 to 2011-2012 (0.04 vs 0.03).
346

Three Air Quality Studies: Great Lakes Ozone Formation and Nitrogen Dry Deposition; and Tucson Aerosol Chemical Characterization

Foley, Theresa Anne January 2012 (has links)
The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM₁₀ and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.
347

Optical micromanipulation of aerosols

Summers, Michael David January 2009 (has links)
This thesis describes my work on the development of optical trapping techniques for manipulating airborne particles. Although many of the basic principles are similar to those used in more conventional colloidal experiments, there are many differences which have been described and investigated in detail in this work. Basic characterisation measurements are made, such as axial Q and sample size selectivity, for a number of sample liquids in a basic optical tweezers setup. Performance at 532nm and 1064nm were compared and shown to be very similar, despite increased absorption in the infrared. A successful method was developed for the optical trapping of solid aerosol particles, allowing a direct comparison between similar particles suspended in both the gas and liquid phase. A single beam levitation trap was developed for transporting liquid aerosols to allow multiple chemical measurements to be made on a single droplet. Performance between Gaussian and Bessel beams was compared for various liquids, with guiding distances of several millimetres being achieved with the Bessel beam geometry. An experiment to demonstrate lasing within an optically tweezed droplet was also performed and spectra were taken. Although strong resonance modes were evident, the data was not conclusive. However, it is likely that a redesign of the experiment would be successful. These techniques have extended research capabilities in the areas of both optical trapping and atmospheric chemistry, allowing the detailed study of single aerosol particles in the 1-10 μm range.
348

Aerosol scattering phase function retrieval from polar orbiting satellites

Wunder, Daniel P. 03 1900 (has links)
The retrieval of an aerosol scattering phase function using a multi-satellite technique is proposed. A total of 33 phase functions were derived from 18 smoke cases and 15 dust cases. Each case was interrogated using four to nine satellite passes over the aerosol in a two to four hour time frame. The radiance values for the Red and Near-Infrared (NIR) channels were combined with backscattering angles to determine the shape of the scattering phase function. The radiance values were input into the Naval Postgraduate School (NPS) aerosol model to determine optical depths and sample phase functions. A comparison was made between the actual phase functions retrieved and the NPS model phase functions. It was found that the phase functions for the smoke cases more closely matched the model phase functions than in the dust cases. Some conclusions could be drawn about the actual aerosol size and density distribution based on how well it matched the model phase function. Further analysis is necessary to define the exact size and number of the aerosol particles. Fully understanding the aerosol composition is crucial in determining its effects on military sensors and impacts to operations.
349

The science and affect of atmosphere in landscape architecture

Lysenko, Kaleigh 07 April 2017 (has links)
Atmosphere carries multi-faceted meaning when considered in the context of spatial design. In an architectural sense, we may speak of atmosphere as a spatial quality or in the way the built or natural environment is capable of moving us emotionally. Yet, when considered in a scientific register, atmosphere may be described as a complex of observable and measurable energies, which give air substance, behavior and force. The practice of landscape architecture entails a heightened awareness of exposure, namely the exposure to meteorological processes that in turn shape much of our perceptual and haptic experience of the ‘outside’ world. The intent of this practicum will be to draw attention to the importance of both designations of atmosphere, particularly within the discipline of landscape architecture, and set within the context of phenomenology. The context of this work begins at the scale of the circumpolar boreal forest and examines a particular biological and chemical phenomenon that occurs between the atmosphere and the boreal forest biome. The scale of focus will be drawn to a site at the southern transition zone between the boreal forest and St. Lawrence mixed forest within the Temagami region of northeast Ontario, Canada. Here, the phenomenon in question is quite palpable. / May 2017
350

Oligomerization of Levoglucosan in Proxies of Biomass Burning Aerosols

Holmes, Bryan J. 18 June 2008 (has links)
Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally aqueous and have a strong saccharidic component due to the combustion and pyrolysis of cellulose, a major component of foliar fuel. This class of aerosol is known to affect both the absorption and scatter of solar radiation. Also, biomass burning aerosols contribute to cloud formation through their action as cloud-condensation nuclei. Many questions exist about the chemical speciation and chemical aging of biomass burning aerosols and how this affects their atmospheric properties and ultimately, global climate. Also, knowledge of the chemical components of these aerosols is important in the search for chemical tracers that can give information about the point or regional source, fuel type, and age of a biomass burning aerosol parcel. Levoglucosan was chosen for these studies as a model compound for biomass burning aerosols because of its high measured concentrations in aerosol samples. Levoglucosan often dominates the aerosol composition by mass. In this dissertation, laboratory proxy systems were developed to study the solution-phase chemistry of levoglucosan with common atmospheric reactants found in biomass burning aerosols (i.e. H+, •OH). To mimic these natural conditions, acid chemistry was studied using sulfuric acid in water (pH=4.5). The hydroxyl radical (•OH) was produced by the Fenton reaction which consists of iron, hydrogen peroxide and acid (H2SO4) in aqueous solvent. For studies in aqueous sulfuric acid, oligomers of levoglucosan were measured by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A rational mechanism is proposed based on both the acid-catalyzed cationic ring-opening of levoglucosan and nucleophilic attack of ROH from levoglucosan on the hemi-acetal carbon to produce pyranose oligomers through the formation of glycosidic bonds. Oligomer formation is further supported by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Reactions of levoglucosan with •OH produced from Fenton chemistry were studied in solution. Two modes of oligomerization (2000 u) were observed for reaction times between 1 and 7 days using MALDI-TOF-MS and laser desorption ionization (LDI) TOF-MS. Single-mass unit continuum mass distributions with dominant -2 u patterns were measured and superimposed by a +176/+162 u oligomer series. This latter oligomer pattern was attributed to a Criegee rearrangement (+14 u) of levoglucosan, initiated by •OH, forming a lactone (176 u). The acid-catalyzed reaction of any ROH from levoglucosan (+162 u) forms an ester through transesterification of the lactone functionality, whereupon propagation forms polyesters. Proposed products and chemical mechanisms are suggested as sources and precursors of humic-like substances (HULIS), which are known to possess a large saccharic component and are possibly formed from biomass burning aerosols. These products could also serve as secondary tracers, giving further information on the source and age of the aerosol.

Page generated in 0.0604 seconds