Spelling suggestions: "subject:"antibody molecule"" "subject:"autoantibody molecule""
1 |
EGFR and HER2 Targeting for Radionuclide-Based Imaging and Therapy : Preclinical StudiesNordberg, Erika January 2008 (has links)
<p>The optimal way to detect and treat cancer is to target cancer cells exclusively without affecting the surrounding tissue. One promising approach is to use radiolabelled molecules to target receptors that are overexpressed in cancer cells. Since the epidermal growth factor receptor (EGFR) family is overexpressed in many types of cancer, it is an attractive target for both diagnostic and therapeutic applications.</p><p>This thesis can be divided into two parts. In part one (paper I), studies were conducted to modulate radionuclide uptake in tumour cells. The results showed that it was possible to modulate the cellular uptake of <sup>125</sup>I delivered by trastuzumab (targeting HER2) by adding EGF (targeting EGFR).</p><p>In part two (papers II-V) a high affinity EGFR-targeting affibody molecule (Z<sub>EGFR:955</sub>)<sub>2</sub> was selected and analysed both <i>in vitro</i> and <i>in vivo</i>. In papers II, III and V, the results obtained when using (Z<sub>EGFR:955</sub>)<sub>2</sub> were compared with those obtained with the two EGFR-binding molecules, EGF and cetuximab. These studies demonstrated that the affibody molecule bound specifically to EGFR (probably to subdomain III) with high affinity (~50 nM in biosensor analysis and ~1 nM in cellular studies) and produced intracellular signalling changes similar to those with cetuximab. In paper IV, <i>in vivo</i> studies were made, demonstrating that [<sup>111</sup>In](Z<sub>EGFR:955</sub>)<sub>2</sub> gave a tumour-specific <sup>111</sup>In uptake of 3.8±1.4% of injected dose per gram tumour tissue, 4 h post-injection. The tumours could be easily visualized with a gamma camera at this time-point. </p><p>The results of these studies indicated that the affibody molecule (Z<sub>EGFR:955</sub>)<sub>2</sub> is a possible candidate for radionuclide-based imaging of EGFR-expressing tumours. The biological effects of (Z<sub>EGFR:955</sub>)<sub>2</sub> might be of interest for therapy applications.</p>
|
2 |
EGFR and HER2 Targeting for Radionuclide-Based Imaging and Therapy : Preclinical StudiesNordberg, Erika January 2008 (has links)
The optimal way to detect and treat cancer is to target cancer cells exclusively without affecting the surrounding tissue. One promising approach is to use radiolabelled molecules to target receptors that are overexpressed in cancer cells. Since the epidermal growth factor receptor (EGFR) family is overexpressed in many types of cancer, it is an attractive target for both diagnostic and therapeutic applications. This thesis can be divided into two parts. In part one (paper I), studies were conducted to modulate radionuclide uptake in tumour cells. The results showed that it was possible to modulate the cellular uptake of 125I delivered by trastuzumab (targeting HER2) by adding EGF (targeting EGFR). In part two (papers II-V) a high affinity EGFR-targeting affibody molecule (ZEGFR:955)2 was selected and analysed both in vitro and in vivo. In papers II, III and V, the results obtained when using (ZEGFR:955)2 were compared with those obtained with the two EGFR-binding molecules, EGF and cetuximab. These studies demonstrated that the affibody molecule bound specifically to EGFR (probably to subdomain III) with high affinity (~50 nM in biosensor analysis and ~1 nM in cellular studies) and produced intracellular signalling changes similar to those with cetuximab. In paper IV, in vivo studies were made, demonstrating that [111In](ZEGFR:955)2 gave a tumour-specific 111In uptake of 3.8±1.4% of injected dose per gram tumour tissue, 4 h post-injection. The tumours could be easily visualized with a gamma camera at this time-point. The results of these studies indicated that the affibody molecule (ZEGFR:955)2 is a possible candidate for radionuclide-based imaging of EGFR-expressing tumours. The biological effects of (ZEGFR:955)2 might be of interest for therapy applications.
|
3 |
EGFR- and HER2-Binding Affibody Molecules : Cellular studies of monomeric, dimeric and bispecific ligandsEkerljung, Lina January 2011 (has links)
Abnormal expression and signaling of the ErbB receptors is associated with the development and progression of several forms of cancer. In this thesis, new ErbB-targeting affibody molecules are evaluated regarding their cellular effects in vitro. Since ligand binding to an ErbB receptor might have an impact on the cell it is important to be aware of these effects as they may have consequences for the continued growth of the tumor when used in vivo. The affibody molecules are intended for tumor targeting with the prospect of clinical use in imaging or therapy. Three types of affibody molecules were studied, HER2-binding, EGFR-binding and bispecific binders that target both EGFR and HER2. The HER2-targeting (ZHER2:342)2 showed promising characteristics. It sensitized SKBR-3 cells to irradiation and decreased cell growth to the same extent as the clinically approved antibody Herceptin. The monomeric version, ZHER2:342, did not induce any large effects on intracellular signaling or biological outcome. This makes (ZHER2:342)2 interesting for therapy purposes, while ZHER2:342 may be better suited for imaging. The bispecific affibody molecules were all able to simultaneously bind to both EGFR and HER2, but none of the six constructs resulted in any large effects on cellular outcome. Interestingly, all three monovalent binders are more functional when positioned at the N-terminal part of the construct and the (S4G)3 linker renders higher affinity of the bispecific binders compared to (G4S)3. Tumors that co-express several ErbB receptors are often more aggressive and associated with a worse prognosis, suggesting that the total ErbB expression pattern might be more informative than the expression level of one receptor regarding cancer prognosis and prediction of response to targeted therapies. Bispecific ligands could thus be used as imaging agents with prognostic value. Another aspect of dual targeting is the possibility of increased tumor specificity since tumors are more likely than healthy tissue to express high amounts of two receptors.
|
4 |
On the Design of Affibody Molecules for Radiolabeling and In Vivo Molecular ImagingRosik, Daniel January 2013 (has links)
Affibody molecules have lately shown great potential as tools for in vivo molecular imaging. These small, 3-helical bundles, with their highly stable protein scaffold, are well suited for the often harsh conditions of radiolabeling. Their small size allows for rapid clearance from the blood circulation which permits the collection of images already within hours after injection. This thesis includes four papers aimed at engineering different variants of a HER2-binding Affibody molecule to enable effective and flexible radiolabeling and enhancing the molecular imaging in terms of imaging contrast and resolution. In paper I an Affibody molecule was engineered to function as a multifunctional platform for site-specific labeling with different nuclides for radionuclide imaging. This was done using only natural amino acids, thereby allowing for both synthetic and recombinant production. By grafting the amino acid sequence -GSECG to the C-terminal of our model-protein, a HER2-binding Affibody molecule, we enabled site specific labeling with both trivalent radiometals and with 99m Tc. Maleim-ide-DOTA was conjugated to the cysteine residue for labeling with 111 In, while the peptide sequence was able to chelate 99m Tc directly. This approach can also be used for site-specific labeling with other probes available for thiol-chemistry, and is applicable also to other protein scaffolds. In paper II we investigated the impact of size and affinity of radiolabeled Affibody molecules on tumor targeting and image contrast. Two HER2-targeting Affibody molecules, a two-helix (~5 kDa) and a three-helix (~7 kDa) counterpart, were synthetically produced, labeled with 111 In via chelation by DOTA and directly compared in terms of biodistribution and targeting properties. Results showed that the smaller variant can provide higher contrast images, at the cost of lower tumor uptake, in high-expressing HER2-tumors. However, neither the tumor uptake nor the contrast of the two-helix variant is sufficient to compete with the three-helix molecule in tumors with low expression of HER2. In paper III and IV we were aiming to find methods to improve the labeling of Affibody molecules with 18 F for PET imaging. Current methods are either complex, time-consuming or generate heavily lipophilic conjugates. This results in low yields of radiolabeled tracer, low specific activity left for imaging, undesirable biodistribution or a combination thereof. In paper III we demonstrate a swift and efficient 2-step, 1-pot method for labeling HER2-binding Affibody molecules by the formation of aluminum 18 F-fluoride (Al 18 F) and its chelation by NOTA, all in 30 min. The results show that the 18 F-NOTA-approach is a very promising method of labeling Affibody molecules with 18 F and further investigation of this scheme is highly motivated. In the last paper we pursued the possibility of decreasing the high kidney retention that is common among small radiotracers with residual-izing radiometabolites. In this work 18 F-4-fluorobenzaldehyde (FBA) was conjugated to a synthetic HER2-targeting Affibody molecule via oxime ligation. However, to avoid elevated liver retention, as seen in previous studies with this kind of label, a hydrophilic triglutamyl spacer between the aminooxy moiety and the N-terminal was introduced. A comparison of the two constructs (with and without the triglutamyl spacer) showed a clear reduction of retention in both kidney and liver in NMRI mice at 2 h p.i. when the spacer was included. In the light of these promising results, further studies including tumor-bearing mice, are in preparation. / <p>QC 20130203</p>
|
5 |
Tumour Targeting using Radiolabelled Affibody Molecules : Influence of Labelling ChemistryAltai, Mohamed January 2014 (has links)
Affibody molecules are promising candidates for targeted radionuclide-based imaging and therapy applications. Optimisation of targeting properties would permit the in vivo visualization of cancer-specific surface receptors with high contrast. In therapy, this may increase the ratio of radioactivity uptake between tumour and normal tissues. This thesis work is based on 5 original research articles (papers I-V) and focuses on optimisation of targeting properties of anti-HER2 affibody molecules by optimising the labelling chemistry. Paper I and II report the comparative evaluation of the anti-HER2 ZHER2:2395 affibody molecule site specifically labelled with 111In (suitable for SPECT imaging) and 68Ga (suitable for PET imaging) using the thiol reactive derivatives of DOTA and NODAGA as chelators. The incorporation of different macrocyclic chelators and labelling with different radionuclides modified the biodistribution properties of affibody molecules. This indicates that the labelling strategy may have a profound effect on the targeting properties of radiotracers and must be carefully optimized. Paper III reports the study of the mechanism of renal reabsorption of anti-HER2 ZHER2:2395 affibody molecule. An unknown receptor (not HER2) is suspected to be responsible for the high reabsorption of ZHER2:2395 molecules in the kidneys. Paper IV reports the optimization and development of in vivo targeting properties of 188Re-labelled anti-HER2 affibody molecules. By using an array of peptide based chelators, it was found that substitution of one amino acid by another or changing its position can have a dramatic effect on the biodistribution properties of 188Re-labelled affibody molecules. This permitted the selection of –GGGC chelator whichdemonstrated the lowest retention of radioactivity in kidneys compared to other variants and showed excellent tumour targeting properties. Paper V reports the preclinical evaluation of 188Re-ZHER2:V2 as a potential candidate for targeted radionuclide therapy of HER2-expressing tumours. In vivo experiments in mice along with dosimetry assessment in both murine and human models revealed that future human radiotherapy studies using 188Re-ZHER2:V2 may be feasible. It would be reasonable to believe that the results of optimisation of anti-HER2 affibody molecules summarized in this thesis can be of importance for the development of other scaffold protein-based targeting agents.
|
6 |
Design and Evaluation of Radiolabeled Affibody Tracers for Imaging of HER2-expressing TumorsWållberg, Helena January 2011 (has links)
The growing understanding of tumor biology and the identification of tumor specificgenetic and molecular alterations, such as the overexpression of human epidermal growthfactor receptor 2 (HER2), opens up for personalization of patient management using targeted therapies. However, this puts stringent demands on the diagnostic tools usedto identify patients that are likely to respond to a particular treatment. Radionuclide molecular imaging is a promising non-invasive method to visualize and characterize the expression of such targets. This thesis, based on five papers, is focused on the development of radiolabeled Affibody molecules for imaging of HER2-expression in malignant tumors. Affibody molecules, which represent a rather novel class of affinity proteins developed by combinatorial protein engineering of the protein A derived Z-domain, display manyfeatures that make them promising tracers for molecular imaging applications. The aim of the work presented here was to further develop the tracer format for improved in vivo properties and flexibility in the choice of radionuclide. In paper I, the development of an assay that enables quantitative studies of the internalization rate and cellular processing of high affinity Affibody molecules is described. The assay was applied to a HER2-binding Affibody variant that was efficiently retained by HER2-expressing cells, although characterized by a slow internalization rate. This may have implications for the choice of label for Affibody molecules since high affinity to the target may be equally, or more, important for good imaging quality than residualizing properties of the radiolabel. In paper II, a HER2-binding Affibody molecule and the monoclonal antibody trastuzumab were labeled with positron emitting 124I, for a head-to-head in vivocomparison of the two tracer formats. The effects of tracer size and presence of an Fc region on the biodistribution profile were investigated. In paper III, a HER2-binding Affibody molecule was site-specifically labeled with radiocobalt and evaluated in vitro and in vivo.A head-to-head in vivo comparison with the well-studied 111In-labeled counterpart was performed, revealing promising potential for the cobalt-labeled molecule as a PET-tracerfor visualization of HER2. Paper IV describes the in vitro and in vivo evaluation of a panel of Affibody molecules with different C-terminal peptide-based chelators for the coordination of 99mTc. Even small changes in the C-terminal sequence had appreciable impact on the biodistribution of the Affibody molecules and by optimizing the design of the chelator, the kidney uptake of 99mTc could be significantly reduced. Finally, in paper V we describe the development of a HER2-targeting Affibody variant equipped with a Sel-tag for site-specific labeling with the short-lived positron emitter 11C. This novel Affibody tracer could be used to image HER2-expressing tumors in vivo within one hour after injection. Taken together, Affibody molecules show great promise as targeting tracers for radionuclide molecular imaging of HER2. Careful design and optimization of the tracer protein is important and can be used to improve the biodistribution and targeting properties of Affibody molecules. / QC 20110922
|
7 |
Affibody molecules targeting HER3 for cancer therapyBass, Tarek January 2017 (has links)
The development of targeted therapy has contributed tremendously to the treatment of patients with cancer. The use of highly specific affinity proteins to target cancer cells has become a standard in treatment strategies for several different cancers. In light of this, many cancer cell markers are investigated for their potential use in diagnostics and therapy. One such marker is the human epidermal growth factor receptor 3, HER3. It has been established as an important contributor to many cancer types. The function of HER3 is to relay cell growth signals from outside of the cell to the inside. Interfering with- and inhibit- ing the function of HER3 has emerged as an interesting strategy for cancer therapeutics. The studies presented in this thesis aim to target HER3 with small, engineered affinity domain proteins for therapeutic purposes. Monomeric affibody molecules have previously been engineered to bind and inhibit HER3 in vitro. Due to the relatively low expression of HER3, an increase in valency appears promising to strengthen the therapeutic potential. Affibody molecules targeting the receptor were thus linked to form bivalent and bispecific constructs and evaluated both in vitro and in vivo. In the first study of this thesis affibody molecules specific for HER3 and HER2 were fused to an albumin binding domain to form bivalent and bispecific construct. The constructs inhibited ligand-induced receptor phos- phorylation of both HER2 and HER3 more efficiently than monomeric affibody molecules. A second approach to enhance the potential of affibody molecules in tumor targeting is described in the second study, where monomeric HER3-binding affibody molecules were engineered to increase their affinity for HER3. The resulting variants showed a 20-fold in- creased affinity and higher capacity to inhibit cancer cell growth. Combining the findings of the first two studies, the third study describes the evaluation of a HER3-targeting bivalent affibody construct for potential application as a therapeutic. Here, the bivalent construct inhibited cancer cell growth in vitro and was found to slow down tumor growth in mice, while being well tolerated and showing no visible toxicity. The fourth study built upon these findings and compares a very similar bivalent construct to the clinically-investigated HER3-specific monoclonal antibody seribantumab. The affibody construct showed very comparable efficacy with the antibody in terms of decreasing tumor growth rate and ex- tending mouse survival. Collectively, these works describe for the first time the use of alternative affinity protein constructs with therapeutic potential targeting HER3. / <p>QC 20170330</p>
|
8 |
Development of molecular recognition by rational and combinatorial engineeringJonsson, Andreas January 2009 (has links)
Combinatorial protein engineering, taking advantage of large libraries of protein variants and powerful selection technology, is a useful strategy for developing affinity proteins for applications in biotechnology and medicine. In this thesis, two small affinity proteins have been subjected to combinatorial protein engineering to improve or redirect the binding. In two of the projects, a three-helix protein domain based on staphylococcal protein A has been used as scaffold to generate so called Affibody molecules capable of binding to key proteins related to two diseases common among elderly people. In the first project, Affibody molecules were selected using phage display technology for binding to Ab-peptides, believed to play a crucial role in Alzheimer’s disease, in that they can oligomerize and contribute to the formation of neural plaques in the brain. The selected Affibody molecules were found to efficiently capture Ab from spiked human plasma when coupled to an affinity resin. The structure of the complex was determined by nuclear magnetic resonance (NMR) and demonstrated that the original helix 1 in the two Affibody molecules was unfolded upon binding, forming intermolecular b-sheets that stabilized the Ab peptide as buried in a tunnel-like cavity. Interestingly, the complex structure also revealed that the Affibody molecules were found to homo-dimerize via a disulfide bridge and bind monomeric Ab-peptide with a 2:1 stoichiometry. Furthermore, Affibody molecule-mediated inhibition of Ab fibrillation in vitro, suggested a potential of selected binders for future therapeutic applications. In the second project, two different selection systems were used to isolate Affibody molecules binding to tumor necrosis factor alpha (TNF), which is involved in inflammatory diseases such as rheumatoid arthritis. Both selection systems, phage display and Gram-positive bacterial display, could successfully generate TNF-binding molecules, with equilibrium dissociation constants (KD) in the picomolar to nanomolar range. Initial characterization of the binding to TNF was evaluated by competitive binding studies between the Affibody molecules and clinically approved TNF antagonists (adaliumumab, infliximab and etanercept) and demonstrated overlapping binding sites with both adaliumumab and etanercept. Furthermore, linkers of different lengths were introduced between Affibody moieties, in dimeric and trimeric constructs that were evaluated for their ability to block the binding between TNF and a recombinant form of its receptor. In the dimeric constructs, a linker length of 20-40 amino acids seemed to have an advantage compared to shorter and longer linkers, and the tested trimeric construct could block the TNF binding at even lower concentration. The results provided valuable information for the design of future Affibody-based molecules that could be investigated in therapeutic or medical imaging applications. In the third project aiming to generate a protein domain with capacity to influence the pharmacokinetics of protein therapeutics, a natural serum albumin-binding domain (ABD) was subjected to an engineering effort aiming at improving the affinity to human serum albumin (HSA), a protein with an exceptional long half-life in serum (19 days). First-generation affinity improved ABD variants were selected using phage display technology from a constructed ABD library. After additional rational engineering of such first generation variants, one variant with a 10,000-fold improved affinity to HSA (KD ≈ 120 fM) was obtained. Furthermore, characterization of this molecule also demonstrated improved affinity to several other serum albumins. When used as a gene fusion partner, this affinity-maturated variant denoted ABD035, should have the potential to extend the half-life of biopharmaceuticals in humans, and several other animal species. / QC 20100722
|
9 |
Combinatorial Protein Engineering Of Affibody Molecules Using E. Coli Display And Rational Design Of Affibody-Based Tracers For Medical ImagingAndersson, Ken G. January 2017 (has links)
Directed evolution is today an established strategy for generation of new affinity proteins. This thesis describes the development of a cell-display method using Escherichia coli for directed evolution of Affibody molecules. Further, the thesis describes rational design of Affibody-based tracers, intended for future patient stratification using medical imaging. Fusing recombinant proteins to various autotransporters is a promising approach for efficient surface display on the surface of E. coli, as well as for construction of high-complexity libraries. In paper I, we successfully engineered an expression vector for display of Affibody molecules using the autotransporter AIDA-I. In paper II, a large Affibody library of 2.3x109 variants was constructed and screening using FACS resulted in new specific binders in the nanomolar range. In paper III, we demonstrated Sortase-mediated secretion and conjugation of binders directly from the E. coli surface. The three following studies describe rational design of Affibody-based tracers against two cancer-associated targets for molecular imaging. First, anti-HER3 Affibody molecules were labelled with 111In, and SPECT imaging showed that the conjugates specifically targeted HER3-expressing xenografts. Furthermore, labeling with 68Ga for PET imaging showed that tumor uptake correlated with HER3 expression, suggesting that the tracers have potential for patient stratification. The last study describes the development and investigation of anti-EGFR Affibody-based imaging agents. Labeled with 89Zr, the Affibody tracer demonstrated higher tumor uptake at 3 h post injection than the anti-EGFR antibody cetuximab at 48 h post injection. In conclusion, this thesis describes new tools and knowledge that will hopefully contribute to the development of affinity proteins for biotechnology, therapy and medical imaging in the future. / <p>QC 20170904</p>
|
10 |
Evaluation of Data-Driven Gating for 68Ga-ABY-025 PET/CT in Breast Cancer PatientsNcuti Nobera, Alain-Klaus January 2020 (has links)
Respiratory motion during PET acquisition degrades image quality. It is mainly the area around the thorax and abdomen which is affected. External devices do provide respiratory gating solutions but are time-consuming to set up on patients and may not always be available. A data-driven gating (DDG) method based on principal component analysis (PCA) was found to provide a reliable respiratory gating signal, discriminating the need for external gating systems with FDG, but it remains to be investigated how well it performs with other PET tracers. The HER2-targeting radiotracer 68Ga-ABY-025 is currently in phase 3 development and is aimed to develop methods to select breast cancer patients that benefit from HER2-targeted treatment. Hence, absolute quantification is important. Respiratory motion correction will be important for improved quantitative accuracy since many patients have metastases in the lower part of the lungs or the liver. DDG was applied to PET/CT list mode data retrospectively using quiescent period gating. Gated images were then compared to reconstructions without gating with a matched number of coincidences. Two iterative reconstructions were evaluated, TOF OSEM (3 iterations, 16 subsets, and a 5 mm gaussian postprocessing filter) and TOF BSREM β 400. Images were evaluated for standardized uptake value (SUV) changes for well-defined lesions in thorax and abdomen where respiratory motion is prevalent. Respiratory motion was detected in a mean 2.1 bed positions per examination. DDG application resulted in a mean increase of 12.7% in SUVmax for TOF OSEM reconstruction (p=0.0156).
|
Page generated in 0.0423 seconds