Spelling suggestions: "subject:"affine monoids""
1 |
Affine Monoids, Hilbert Bases and Hilbert FunctionsKoch, Robert 11 July 2003 (has links)
The aim of this thesis is to introduce the reader to the theory of affine monoids and, thereby, to present some results. We therefore start with some auxiliary sections, containing general introductions to convex geometry, affine monoids and their algebras, Hilbert functions and Hilbert series. One central part of the thesis then is the description of an algorithm for computing the integral closure of an affine monoid. The algorithm has been implemented, in the computer program `normaliz´; it outputs the Hilbert basis and the Hilbert function of the integral closure (if the monoid is positive). Possible applications include: finding the lattice points in a lattice polytope, computing the integral closure of a monomial ideal and solving Diophantine systems of linear inequalities. The other main part takes up the notion of multigraded Hilbert function: we investigate the effect of the growth of the Hilbert function along arithmetic progressions (within the grading set) on global growth. This study is motivated by the case of a finitely generated module over a homogeneous ring: there, the Hilbert function grows with a degree which is well determined by the degree of the Hilbert polynomial (and the Krull dimension).
|
2 |
Parallel Algorithms for Rational Cones and Affine Monoids / Parallele Algorithmen für rationale Kegel und affine MonoideSöger, Christof 22 April 2014 (has links)
This thesis presents parallel algorithms for rational cones and affine monoids which pursue two main computational goals: finding the Hilbert basis, a minimal generating system of the monoid of lattice points of a cone; and counting elements degree-wise in a generating function, the Hilbert series.
|
Page generated in 0.0438 seconds