• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of chondrocyte mediated proteoglycan degradation

Billington, Caron Jane January 1998 (has links)
No description available.
2

Large artery stiffness : genes and pathways

Al Maskari, Raya January 2018 (has links)
Aortic stiffness underlies systolic hypertension, promotes heart failure and is associated with increased cardiovascular morbidity and mortality. It is regarded as a primary driver of left ventricular hypertrophy and aortic aneurysms and is linked to the pathogenesis of cognitive impairment, stroke and renal failure. Like most cardiovascular traits, aortic stiffness is a complex trait and is moderately heritable, yet the precise molecular mechanisms that underpin the stiffening process remain poorly defined. This study aimed to employ multiple approaches to further identify the genetic basis of aortic stiffness in a large repository of human donor aortas that had undergone ex vivo pulse wave velocity (PWV) phenotyping. The first part of this work sought to investigate the molecular basis of Loeys-Dietz type 4 syndrome in a pedigree with multiple cases of aortic aneurysms and dissections. A missense variant p.(Arg320Cys) was identified in a highly evolutionary conserved region of TGFB2. There was striking upregulation of TGFB1, TGFB2 and pSMAD2/3 on imunocytochemical straining and western blotting of the aortic tissue from the index case confirming the functional importance of the variant. This case highlighted the striking paradox of predicted loss-of-function mutations in TGFB2 causing enhanced TGFβ signalling in this emerging familial aortopathy and underscored the significance of TGFβ signalling in aortic extracellular matrix biology. The second part of this work attempted to characterise the biological basis for the susceptibility locus identified in the most recent genome wide analysis of carotid-femoral PWV. While the locus lies within the 14q32.2 gene desert, it contains regulatory elements, with the transcriptional regulator B-cell CLL/lymphoma 11B (BCL11B) and non-coding RNA DB129663 representing potential targets for these enhancers. The association of five lead SNPs from the genome-wide association studies (GWAS) meta-analysis was examined for ex vivo aortic stiffness and BCL11B and DB129663 aortic mRNA expression. Three of the five SNPs associated significantly with PWV and showed allele-specific differences in BCL11B mRNA. The risk alleles associated with lower BCL11B suggesting a protective role for BCL11B. Despite the strong association, BCL11B protein was not detected in the human aorta; however, qPCR for CD markers showed that BCL11B transcript correlated strongly with markers for activated lymphocytes. In contrast, DB129663 transcripts were detected in 55% of the samples, and of the five SNPs only one showed allele-specific differences in aortic DB129663 transcripts. No significant differences were observed in PWV between samples expressing or lack- ing DB129663, and therefore the implication of this lncRNA in aortic stiffness remains elusive. The BCL11B transcript detected in the human aorta may reflect lymphocyte infiltration, suggesting that immune mechanisms contribute to the observed association with PWV. For the final part of this work genetic associations with aortic stiffness were explored in a candidate gene-based study utilising tagging SNPs to effectively capture the genetic information from linkage disequilibrium blocks. Association analyses were performed in young, healthy ENIGMA study par- ticipants selected for high and low PWV values then validated in the remaining ENIGMA cohorts. The association of four lead SNPs was then examined for ex vivo aortic stiffness in human donor aortas. The tissue expression of these SNPs and their encoded proteins was also explored. Neither the aggrecan nor the fibulin-1 SNPs showed significant associations with ex vivo PWV in the donor aortas. The exonic aggrecan tagSNP rs2882676 displayed differential transcript abundance between homozygous allele carriers but this did not translate at the protein level. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan, reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.
3

Structural characterisation of aggrecan in cartilaginous tissues and tissue engineered constructs

Craddock, Russell January 2018 (has links)
Collagen II and the proteoglycan aggrecan are key extracellular matrix (ECM) proteins in cartilaginous tissues such as the intervertebral disc (IVD). Given the functional role that these structural and functional proteins have in the IVD, ECM in tissue engineered intervertebral disc (TE IVD) constructs needs to recapitulate native tissue. As such, there is a need to understand the structure and mechanical function of these molecules in native tissue to inform TE strategies. The aims here were to characterise aggrecan and collagen II using atomic force microscopy (AFM), size-exclusion chromatography multi angle light scattering (SEC-MALS), histology, quantitative PCR, nanomechanical and computational modelling in: (i) skeletally immature and mature bovine articular cartilage (AC) and nucleus pulposus (NP), (ii) TE IVD constructs cultured in hypoxia or treated with transforming growth factor beta [TGFÎ23] or growth differentiation factor [GDF6]), and (iii) porcine AC and NP tissue. No variation in collagen II structure was observed although the proportion of organised fibrillar collagen varied between tissues. Both intact (containing all three globular domains) and non-intact (fragmented) aggrecan monomers were isolated from both AC and IVD and TE IVD constructs. Mature intact native NP aggrecan was ~60 nm shorter (core protein length) compared to AC. In skeletally mature bovine NP and AC tissue, most aggrecan monomers were fragmented (99% and 95%, respectively) with fragments smaller and more structurally heterogeneous in NP. Similar fragmentation was observed in skeletally immature bovine AC (99.5%), indicating fragmentation occurs developmentally at an early age. Fragmentation was not a result of enhanced gelatinase activity. Aggrecan monomers isolated from notochordal cell rich porcine NP were also highly fragmented, similar to bovine NP. Application of a computational packing model suggested fragmentation may affect porosity and nutrient transfer. The reduced modulus was greater in AC than NP (497 kPa and 76.7 kPa, respectively) with the difference likely due to the organisation and abundance of ECM molecules, rather than individual structure. Growth factors (GDF6 and TGFÎ23), and not oxygen tension treated TE IVD constructs were structurally (with >95% fragmented monomers), histologically and mechanically (GDF6: 60.2 kPa; TGFÎ23; 69.9 kPa) similar to native NP tissue (76.7 kPa) and there was evidence of gelatinase activity. To conclude, these results show that the ultrastructure of intact aggrecan was tissue and cell dependent, and could be modified by manipulation of cell culture conditions, specifically GDF6 which may play a role in aggrecan glycosylation.
4

Mechanism of cartilage destruction in osteoarthritis

Ishiguro, Naoki, Kojima, Toshihisa, Poole, A.Robin 11 1900 (has links)
No description available.
5

Global Deletion of Sost Increases Intervertebral Disc Hydration But May Trigger Chondrogenesis

Kroon, Tori 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intervertebral discs (IVD) degenerate earlier than many other musculoskeletal tissues and will continue to degenerate with aging. IVD degeneration affects up to 80 percent of the adult population and is a major contributing factor to low back pain. Anti-sclerostin antibody is an FDA-approved treatment for osteoporosis in postmenopausal women at high-risk for fracture and, as a systemic stimulant of the Wnt/LRP5/β-Catenin signaling pathway, may impact the IVD. Stabilization of β-Catenin in the IVD increases Wnt signaling and is anabolic to the extracellular matrix (ECM), while deletion of β-catenin or LRP5 decreases Wnt signaling and is catabolic to the ECM. Here, we hypothesized that a reduction of Sost would stimulate ECM anabolism. Lumbar and caudal (tail) IVD and vertebrae of Sost KO and WT (wildtype) mice (n=8 each) were harvested at 16 weeks of age and tested by MRI, histology, immunohistochemistry, Western Blot, qPCR, and microCT. Compared to WT, Sost KO reduced sclerostin protein and Sost gene expression. Next, Sost KO increased the hydration of the IVD and the proteoglycan stain in the nucleus pulposus and decreased the expression of genes associated with IVD degeneration, e.g., heat shock proteins. However, deletion of Sost was compensated by less unphosphorylated (active) β-Catenin protein in the cell nucleus, upregulation of Wnt signaling inhibitors Dkk1 and sFRP4, and catabolic ECM gene expression. Consequently, notochordal and early chondrocyte-like cells (CLCs) were replaced by mature CLCs. Overall, Sost deletion increased hydration and proteoglycan protein content, but activated a compensatory suppression of Wnt signaling that may trigger chondrogenesis and may potentially be iatrogenic to the IVD in the long-term.
6

A sulfated glycosaminoglycan linkage region is a novel type of Human Natural Killer-1 (HNK-1) epitope expressed on aggrecan in perineuronal nets / ペリニューロナルネットを構成するアグリカン上には新規HNK-1糖鎖が存在する

Yabuno, Keiko 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第19644号 / 人健博第36号 / 新制||人健||3(附属図書館) / 32680 / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 高桑 徹也, 教授 三谷 章, 教授 浅野 雅秀 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
7

A Recombinant System to Model Proteoglycan Aggregate Interactions and Aggrecan Degradation

Miwa, Hazuki Eleanor January 2006 (has links)
No description available.
8

Gene Expression of Stromelysin and Aggrecan in Osteoarthritic Cartilage

Stöve, Johannes, Gerlach, Christina, Huch, Klaus, Günther, Klaus Peter, Brenner, Rolf, Puhl, Wolfhart, Scharf, Hanns-Peter 26 February 2014 (has links) (PDF)
Objective: To analyze cartilage gene expression of patients with osteoarthritis (OA) in correlation with radiographic and histological findings. Materials and Methods: Twenty-one patients with OA of the knee admitted for total knee replacement were analyzed clinically and radiographically by the Kellgren and Lawrence system. During surgery, cartilage samples from the medial and lateral condyles and tibial plateaus were harvested separately. Specimens were analyzed histologically (Mankin score) and total RNA was extracted directly from cartilage tissue. Steady state levels of stromelysin (MMP-3), aggrecan (AGG) and the house-keeping gene β-actin were measured using quantitative PCR. Results: Histology of medial and lateral knee compartments corresponded to radiographic changes (Spearman correlation coefficient: r = 0.7 (p < 0.01)). There was a positive correlation between MMP-3 and AGG gene expression (r = 0.4; p < 0.01). We found considerable variation of expression levels of MMP-3 and AGG and no correlation of gene expression with histological or radiographic scoring. Conclusion: The positive correlation between AGG and MMP-3 suggests a common regulation of anabolic and catabolic metabolism. There was no simple dependency between gene expression and histological and radiological findings in cartilage. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
9

Gene Expression of Stromelysin and Aggrecan in Osteoarthritic Cartilage

Stöve, Johannes, Gerlach, Christina, Huch, Klaus, Günther, Klaus Peter, Brenner, Rolf, Puhl, Wolfhart, Scharf, Hanns-Peter January 2001 (has links)
Objective: To analyze cartilage gene expression of patients with osteoarthritis (OA) in correlation with radiographic and histological findings. Materials and Methods: Twenty-one patients with OA of the knee admitted for total knee replacement were analyzed clinically and radiographically by the Kellgren and Lawrence system. During surgery, cartilage samples from the medial and lateral condyles and tibial plateaus were harvested separately. Specimens were analyzed histologically (Mankin score) and total RNA was extracted directly from cartilage tissue. Steady state levels of stromelysin (MMP-3), aggrecan (AGG) and the house-keeping gene β-actin were measured using quantitative PCR. Results: Histology of medial and lateral knee compartments corresponded to radiographic changes (Spearman correlation coefficient: r = 0.7 (p < 0.01)). There was a positive correlation between MMP-3 and AGG gene expression (r = 0.4; p < 0.01). We found considerable variation of expression levels of MMP-3 and AGG and no correlation of gene expression with histological or radiographic scoring. Conclusion: The positive correlation between AGG and MMP-3 suggests a common regulation of anabolic and catabolic metabolism. There was no simple dependency between gene expression and histological and radiological findings in cartilage. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
10

A MOLECULAR MECHANISM REGULATING THE TIMING OF CORTICOGENICULATE INNERVATION

Brooks, Justin 17 October 2013 (has links)
Visual system development requires the formation of precise circuitry in the dorsal lateral geniculate nucleus (dLGN) of the thalamus. Although much work has examined the molecular mechanisms by which retinal axons target and form synapses in dLGN, much less is known about the mechanisms that coordinate the formation of non-retinal inputs in dLGN. These non-retinal inputs represent ~90% of the terminals that form in dLGN. Interestingly, recently reports show that the targeting and formation of retinal and non-retinal inputs are temporally orchestrated. dLGN relay neurons are first innervated by retinal axons, and it is only after retinogeniculate synapses form that axons from cortical layer VI neurons are permitted to enter and arborize in dLGN. The molecular mechanisms governing the spatiotemporal regulation of corticogeniculate innervation are unknown. Here we screened for potential cues in the perinatal dLGN that might repel the premature invasion of corticogeniculate axons prior to the establishment of retinogeniculate circuitry. We discovered aggrecan, an inhibitory chondroitin sulfate proteoglycan (CSPG), was highly enriched in the perinatal dLGN, and aggrecan protein levels dropped dramatically at ages corresponding to the entry of corticogeniculate axons into the dLGN. In vitro assays demonstrated that aggrecan is sufficient to repel axons from layer VI cortical neurons, and early degradation of aggrecan, with chondroitinase ABC (chABC), promoted advanced corticogeniculate innervation in vivo. These results support the notion that aggrecan is necessary for preventing premature innervation of the dLGN by corticogeniculate axons. To understand the mechanisms that control aggrecan distribution, we identified a family of extracellular enzymes (the a disintegrin and metalloproteinase with thromobospondin motifs [ADAMTS] family) expressed in postnatal dLGN that are known to contain aggrecan-degrading activity. Importantly, ADAMTS family members are upregulated in dLGN after retinogeniculate synapses form, and intrathalamic injection of ADAMTS4 (also known as aggrecanase-1) resulted in premature invasion of dLGN by corticogeniculate axons. Taken together these results implicate aggrecan and ADAMTSs in the spatial and temporal regulation of non-retinal inputs to the dLGN.

Page generated in 0.1593 seconds