Spelling suggestions: "subject:"agriculture, agronomia."" "subject:"agriculture, agronomic.""
181 |
Mapping of drought tolerance and leaf rust resistance in wheatSmith, Lauren M. January 1900 (has links)
Master of Science / Department of Agronomy / John P. Fellers / Allan K. Fritz / Water availability is commonly the most limiting factor to crop production, especially in drought prone areas like the Midwest. This study was conducted to map quantitative trait loci (QTL) involved in drought tolerance in wheat (Triticum aestivum L.) to enable their use for marker assisted selection (MAS) in breeding. A population of 122 F[subscript]7 derived recombinant inbred lines from a cross between Dharwar Dry and Sitta, spring wheat lines with contrasting drought tolerances, was analyzed using the amplified fragment length polymorphism (AFLP) technique and Diversity Array Technology (DArT) markers to create a QTL map. Of the 256 AFLP primer combinations evaluated, 151 were found to be polymorphic between the parents and were used to screen the population. A linkage map of 48 groups was created from the combined DArT markers, AFLP data, and SSR markers. This was used to create a QTL map which identified QTL in 24 of these groups. Using these markers for MAS in a breeding program could overcome the difficulties of selecting for drought tolerance.
Another serious limitation to wheat production is leaf rust caused by the pathogen Puccinia triticina. Leaf rust causes between 1% and 20% yield loss on average and tends to be the worst in years with high yield potential. PI 289824 contains a single, dominant gene for seedling resistance mapping to chromosome 5BS and thought to be different from Lr52. An F[subscript]2 mapping population from a cross between PI 289824 and Jagger was used to try to identify markers very closely linked to the gene and therefore useful for MAS. The population presented some mapping challenges, but with the use of SSR and EST-STS markers, the gene was flanked. However, the markers were at too a great distance to be useful for mapping.
|
182 |
Stress Tolerance and Horticultural Evaluation of the Genus SalixKuzovkina-Eischen, Yulia A. 24 March 2003 (has links)
No description available.
|
183 |
Morpholotical and genetic variation within perennial ryegrass (lylium perenne l.)Liu, Jianyang 10 October 2005 (has links)
No description available.
|
184 |
Risk for lung cancer among sugar cane farmers and processing workersAmre, Devendra January 1999 (has links)
No description available.
|
185 |
Genetic analysis of soybean aphid resistance gene in soybean K1621Meng, Jianye January 1900 (has links)
Doctor of Philosophy / Genetics Interdepartmental Program-Agronomy / William T. Schapaugh Jr / The soybean aphid (Aphis glycines Matsumura) has been one of the major pests of soybean [Glycine max (L.) Merr.] in soybean-growing regions of North America since it was first reported in 2000. The objectives of this study were to screen for soybean aphid resistant genotypes, determine the inheritance of resistant genes, and map and validate the resistance gene in the moderate resistant genotype K1621 using simple sequence repeat (SSR) markers. A mapping population of 150 F2:3 families from the cross between K1621 and susceptible genotype KS4202 were evaluated for aphid resistance. Phenotyping was conducted on the basis of total aphid number per plant 7 days following infestation with 4 aphids. Inheritance study indicated that one major dominant gene controls soybean aphid resistance in K1621. After SSR markers for polymorphism were screened between parents, a total of 133 polymorphic markers distributed across the soybean genome were used for genotyping. One quantitative trait loci (QTL) controlling antibiotic resistance was found by using the composite interval mapping method. This QTL localized on chromosome 13 (linkage group F) between markers Sat_234 and S6814 and explained 54% of the phenotypic variation. The putative QTL was further validated by single marker analysis using an independent population derived from the cross of K1621 and Dowling. The locus for soybean aphid resistance in K1621 was named [Rag]_K1621. The markers identified and validated in this study could be useful for marker-assisted selection of [Rag]_K1621.
|
186 |
Genetics of resistance to leaf and stripe rust diseases in the spring wheat 'Amadina'Nyori, Peter Michael Bulli January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Allan K. Fritz / In this research, a recombinant inbred line (RIL) population derived from cross between a leaf rust- and stripe rust-susceptible spring wheat ‘Avocet S’ and a slow leaf- and stripe-rusting resistant spring wheat ‘Amadina’ was used to postulate and map leaf rust seedling resistance genes, identify quantitative trait loci (QTL) for slow-rusting resistance against leaf and stripe rust, and study slow leaf-rusting components, latent period and infection frequency. Two known Lr genes (Lr23, and Lr26) were identified to be present in ‘Amadina’ through gene postulation, pedigree, cytogenetic, and polymerase chain reaction analyses. One unknown gene associated with seedling resistance was also mapped on chromosome 1BL. In greenhouse experiment, it was estimated that at least five genes conditioning final disease severity (FS) and latent period (LP), and four genes conditioning infection frequency (IF), segregated in the population. Correlations between LP and FS, and LP and IF were moderately negative, and that between IF and FS was moderately positive, indicating inter-dependence of the traits. Two QTL on chromosomes 1BL and 6BL were associated with LP and FS, and three QTL on chromosomes 1BL, 6BL and 2DS were associated with IF. Segregation of the RIL population in field experiment indicated that there were at least four and three adult plant resistance (APR) genes involved in resistance for leaf and stripe rust. Six QTL on chromosomes 3AL, 4AL, 1BL, 5BL, and 7BL were associated with APR for leaf rust, and seven QTL on chromosome 4AL, 5AL, 1BL, 2BL, 4BL, 5BL, 2DL, and 4D were associated with APR for stripe rust. Our results indicated that the major portion of genetic variability for slow-rusting resistance was additive gene action, and, to some extent, epistasis. In this research, we also explored the utility of remote sensing and geographic information systems (GIS) and analytical operations to discriminate leaf rust pustules from other parts of leaf and to accurately determine pustule size in ‘Amadina’ and ‘Avocet S’.
|
187 |
Comparing hyperspectral reflectance characteristics of Caucasian bluestem and native tallgrass prairie over a growing seasonGrabow, Bethany Susan Porter January 1900 (has links)
Master of Science / Department of Agronomy / Walter H. Fick / Kevin Price / Caucasian bluestem [Bothriochloa bladhii (Retz) S.T. Blake] is a perennial, C4 warm-season bunchgrass that was first introduced in 1929 from Russia as a potential forage crop in the Great Plains. Due to its invasiveness and tolerance of drought and grazing pressure, Caucasian bluestem can out-compete native prairie species. Research has shown that this species, when compared to native tallgrass species in the Flint Hills of Kansas causes decreased cattle weight gains because of its poor forage quality relative to tallgrass prairie species. Traditional methods of plant data measurements and mapping are costly and time consuming. Use of remotely sensed data to map and monitor the distribution and spread of this plant would be most useful in the control of this aggressive invader. Spectroradiometer data were collected over the 2009 growing season to determine if and when Caucasian bluestem was spectrally unique from native tallgrass prairie species. Observations were made from June through September as the plants were going into a senescent state. Reflectance data were measured approximately every two weeks or when clear/near clear sky conditions prevailed. Statistical analyses for differences in spectral characteristics were conducted to determine the optimal spectral bands, indices and timing for discriminating Caucasian bluestem from native tallgrass species. Difference in reflectance for spectral reflectance of bands 760 nm, 940 nm, 1,070 nm, and 1,186 nm were found to be statistically significant on the June 17th and June 30th sampling dates. The following band ratios and indices were found to be significantly different between Caucasian bluestem and native range on the June 17th collection date: Simple Ratio, Modified Normalized Difference Index, Normalized Phaeophytinization Index, Plant Index 1, Normalized Water Difference Index, Water Band Index, Normalized Difference Nitrogen Index, and the Normalized Difference Lignin Index. Findings of this study suggest that Caucasian bluestem can be spectrally discriminated from native tallgrass prairies of the Flint Hills in Kansas if the measurements are collected in mid to late June. Statistical analyses also showed differences between treatments for percent litter, grass, and forb basal cover.
|
188 |
In planta characterization of Magnaporthe oryzae biotrophy-associated secreted (BAS) proteins and key secretion componentsGiraldo, Martha Cecilia January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Barbara S. Valent / Rice blast caused by the ascomycetous fungus Magnaporthe oryzae remains a threat to global sustainable agriculture and food security. This pathogen infects staple cereal crops such as rice, wheat, barley and millets, as well as turf grasses, in a distinct way among fungal plant pathogens, which we described in the first chapter. In addition to economical importance, rice blast is a model pathosystem for difficult-to-study biotrophic fungi and fungal-plant interactions. We are studying proteins that fungi secrete inside living cells to block plant defenses and control host cell processes; these proteins are called effectors. To date mechanisms for secretion and delivery of effectors inside host cells during disease establishment remain unknown. This step is critical to ensure the successful infection. So far, the only commonality found among all unique small-secreted blast effector proteins is their accumulation in a novel in planta structure called the biotrophic-interfacial complex (BIC). Identifying effectors and understanding how they function inside rice cells are important for attaining durable disease control. In the second chapter, we presented one approach to address this challenge. We characterized four candidate effector genes that were highly expressed specifically during the rice cell invasion. Using transgenic fungi that secrete fluorescently-labeled versions of each protein allowed me to follow them during invasion in vivo by live cell imaging. These candidates show distinct secretion patterns suggesting a spatially-segregated secretion mechanism for effectors. Results revealed a BIC-located strong candidate cytoplasmic blast effector, two putative cell-to-cell movement proteins and a putative extrainvasive hyphal membrane (EIHM)-matrix protein, which has become a valuable tool for assessing successful infection sites. In the third chapter, we test if normal secretion components of filamentous fungi are involved in accumulation of effectors into BICs. We report localization studies with M. oryzae orthologs of conserved secretion machinery components to investigate secretion mechanisms for effectors showing preferential BIC accumulation and for non-BIC proteins such as BAS4. Especially bright fluorescence adjacent to BICs from Mlc1p (Myosin Light Chain, a Spitzenkörper marker), from Snc1p (a secretory vesicle marker), and from Yup1p (a putative t-SNARE endosomal protein) suggest secretion actively occurs in the BIC-associated cells. Localization of Spa2p (a polarisome marker), as a distinct spot at the tips of the bulbous invasive hyphae (IH) in planta, suggests the existence of two secretion complexes after the fungus switches growth from the polarized filamentous primary hyphae to bulbous IH. In the final chapter on future perspectives, we present some strategies towards the molecular understanding of the M. oryzae secretion mechanism during biotrophic invasion, which will lead to novel strategies for disease control.
|
189 |
Grain sorghum response to postemergence applications of mesotrione and quizalofopAbit, Mary Joy Manacpo January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Kassim Al-Khatib / Growth chamber, greenhouse and field experiments using conventional grain sorghum were conducted to 1) evaluate the differential response of grain sorghum hybrids to POST application of mesotrione at various rates and application timings, and 2) determine the physiology of tolerance of grain sorghum hybrids to mesotrione. Sorghum response ranged from susceptible to tolerant. Mesotrione dose-response studies on four sorghum hybrids revealed that injury symptoms were greatest in Pioneer 85G01 and least in Asgrow Seneca. Mesotrione applied EPOST (early POST) injured sorghum more than when applied at MPOST (mid POST) or LPOST (late POST) timings. Observed injury symptoms were not well correlated with grain yield and were transient, thus injury did not reduce sorghum grain yield. Foliar absorption or translocation of mesotrione in tolerant hybrids did not differ with that of susceptible hybrids but metabolism was more rapid in tolerant than in susceptible hybrids. Initial grain sorghum injury was severe and will likely be a major concern to producers.
Field and growth chambers studies were conducted on herbicide-resistant grain sorghum to 1) determine the effect of quizalofop rates, application timings, and herbicide tank mixes on acetyl-coenzyme A carboxylase (ACCase)-resistant grain sorghum injury and yield, and 2) determine if herbicide metabolism is an additional mechanism that could explain the resistance of ACCase- and acetolactate synthase (ALS)-resistant grain sorghum. Depending on rate, EPOST application caused the greatest injury while the least injury occurred with LPOST application. Crop injury from quizalofop was more prominent at rates higher than the proposed use rate (62 g ha [superscript]-1) in grain sorghum. Sorghum grain yield was not affected by quizalofop regardless of rates or application timings. Weed control was greater when quizalofop was applied with other herbicides than when applied alone. Herbicide treatments except those that included 2,4-D caused slight to no sorghum injury. Results of the quizalofop metabolism study do not support the involvement of differential metabolism in the observed response of grain sorghum to quizalofop. Rimsulfuron metabolism by ALS-resistant sorghum is more rapid than the susceptible genotypes, thus explaining the observed rapid recovery of grain sorghum plants from rimsulfuron injury in the field.
|
190 |
Spatial distribution, dispersal behavior and population structure of Tribolium castaneum herbst (Coleoptera: tenebrionidae)Semeao, Altair Arlindo January 1900 (has links)
Doctor of Philosophy / Department of Entomology / James F. Campbell / Phillip E. Sloderbeck / Robert "Jeff" J. Whitworth / Knowledge of factors influencing the establishment, persistence and distribution of stored-product pests aids the development of effective Integrated Pest Management (IPM) programs in food storage and processing facilities. This research focused primarily on Tribolium castaneum, which is one of the most important pests of mills. Populations of T. castaneum from different food facilities can potentially be interconnected by either their own dispersal behavior or by human transportation. Population genetic structure analyses based on microsatellites and other insertion-deletion polymorphisms (“indels”) showed that populations from different mills around the US are genetically distinct from each other, but the level of differentiation was not correlated with the geographic distance. A potential source of insect infestation within a food facility is spillage that accumulates outside or movement from bulk storage facilities on site. Results from three facilities showed that most stored-product species were captured both inside and outside buildings, but T. castaneum was rarely captured outside of the facilities. Spatial distribution of all species outside was associated with the proximity of buildings, not necessarily with areas with accumulated spillage. T. castaneum populations inside facilities are potentially exposed to frequent genetic bottlenecks resulting from structural fumigations. Changes in allele frequencies through time, based on the analysis of microsatellites and other indels in individuals collected in a mill, confirmed bottleneck effects. To understand how spatial distribution of T. castaneum within a mill could be influenced by environmental and physical factors, a range of variables were measured at each trap location. There was significant variation among trap locations regarding beetle captures and the variables measured, but increase in beetle captures correlated only with increase in temperature and spillage production. Tribolium castaneum response to visual cues could influence attraction to pheromone and kairomone olfactory cues used in traps. Results of laboratory experiments showed that adults respond to tall narrow black shapes and placing traps in front of these shapes can increase captures. This research provides new insights into factors influencing the spatial distribution of T. castaneum and could help in improving monitoring programs for this important pest of the food industry.
|
Page generated in 0.0569 seconds