• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Black-Box Modeling of the Air Mass-Flow Through the Compressor in A Scania Diesel Engine / Svartboxmodellering av luftmassflödet förbi kompressorn i en Scania dieselmotor

Törnqvist, Oskar January 2009 (has links)
<p>Stricter emission legislation for heavy trucks in combination with the customers demand on low fuel consumption has resulted in intensive technical development of engines and their control systems. To control all these new solutions it is desirable to have reliable models for important control variables. One of them is the air mass-flow, which is important when controlling the amount of recirculated exhaust gases in the EGR system and to make sure that the air to fuel ratio is correct in the cylinders. The purpose with this thesis was to use system identification theory to develop a model for the air mass-flow through the compressor. First linear black-box models were developed without any knowledge of the physics behind. The collected data was preprocessed to work in the modeling procedure and then models with one or more inputs where built according to the ARX model structure. To further improve the models performance, non-linear regressors was developed from physical relations for the air mass-flow and used to form grey-box models of the air mass-flow.In conclusion, the performance was evaluated through comparing the estimated air mass-flow from the best model with the estimate that an extended Kalman filter together with a physical model produced.</p> / <p>Hårdare utsläppskrav för tunga lastbilar i kombination med kundernas efterfrågan på låg bränsleförbrukning har resulterat i en intensiv utveckling av motorer och deras kontrollsystem. För att kunna styra alla dessa nya lösningar är det nödvändigt att ha tillförlitliga modeller över viktiga kontrollvariabler. En av dessa är luftmassflödet som är viktig när man ska kontrollera den mängd avgaser som återcirkuleras i EGR-systemet och för att se till att kvoten mellan luft och bränsle är korrekt i motorns cylindrar. Syftet med det här examensarbetet var att använda systemidentifiering för att ta fram en modell över luftmassflödet förbi kompressorn. Först togs linjära svartboxmodeller fram utan att ta med någon kunskap om den bakomliggande fysiken. Insamlade data förbehandlades för att passa in i modelleringsproceduren och efter det skapades i enlighet med ARX-modellstrukturen modeller med en eller flera insignaler. För att ytterligare förbättra modellernas prestanda togs icke-linjära regressorer fram med hjälp av fysikaliska relationer för luftmassflödet. Dessa användes sedan för att skapa gråboxmodeller av luftmassflödet. Avslutningsvis utvärderades prestandan genom att det estimerade luftmassflödet från den bästa modellen jämfördes med det estimat som ett utökat kalmanfilter tillsammans med fysikaliska ekvationer genererade.</p>
12

Black-Box Modeling of the Air Mass-Flow Through the Compressor in A Scania Diesel Engine / Svartboxmodellering av luftmassflödet förbi kompressorn i en Scania dieselmotor

Törnqvist, Oskar January 2009 (has links)
Stricter emission legislation for heavy trucks in combination with the customers demand on low fuel consumption has resulted in intensive technical development of engines and their control systems. To control all these new solutions it is desirable to have reliable models for important control variables. One of them is the air mass-flow, which is important when controlling the amount of recirculated exhaust gases in the EGR system and to make sure that the air to fuel ratio is correct in the cylinders. The purpose with this thesis was to use system identification theory to develop a model for the air mass-flow through the compressor. First linear black-box models were developed without any knowledge of the physics behind. The collected data was preprocessed to work in the modeling procedure and then models with one or more inputs where built according to the ARX model structure. To further improve the models performance, non-linear regressors was developed from physical relations for the air mass-flow and used to form grey-box models of the air mass-flow.In conclusion, the performance was evaluated through comparing the estimated air mass-flow from the best model with the estimate that an extended Kalman filter together with a physical model produced. / Hårdare utsläppskrav för tunga lastbilar i kombination med kundernas efterfrågan på låg bränsleförbrukning har resulterat i en intensiv utveckling av motorer och deras kontrollsystem. För att kunna styra alla dessa nya lösningar är det nödvändigt att ha tillförlitliga modeller över viktiga kontrollvariabler. En av dessa är luftmassflödet som är viktig när man ska kontrollera den mängd avgaser som återcirkuleras i EGR-systemet och för att se till att kvoten mellan luft och bränsle är korrekt i motorns cylindrar. Syftet med det här examensarbetet var att använda systemidentifiering för att ta fram en modell över luftmassflödet förbi kompressorn. Först togs linjära svartboxmodeller fram utan att ta med någon kunskap om den bakomliggande fysiken. Insamlade data förbehandlades för att passa in i modelleringsproceduren och efter det skapades i enlighet med ARX-modellstrukturen modeller med en eller flera insignaler. För att ytterligare förbättra modellernas prestanda togs icke-linjära regressorer fram med hjälp av fysikaliska relationer för luftmassflödet. Dessa användes sedan för att skapa gråboxmodeller av luftmassflödet. Avslutningsvis utvärderades prestandan genom att det estimerade luftmassflödet från den bästa modellen jämfördes med det estimat som ett utökat kalmanfilter tillsammans med fysikaliska ekvationer genererade.
13

Řešení systému chlazení odplynů pro odstranění obsažených rozpouštědel / Solving of off-gas cooling system for removing contained solvents

Blažek, Pavel January 2011 (has links)
Diploma thesis deals with searching of the most appropriate solution of air mass cooling to clear away contained solvents. The solution is based on real and operated pharmaceutical unit. The cooling system is solved as systém of three tubular heat exchangers. In the first heat exchanger the air mass is cooled down by water, in the second by ice-cold water and brine R32 is used for cooling in the third heat exchanger. Heat exchanger system is solved for cooling the air mass which results in condensation of contained solvent – acetone.
14

FUEL COMPOSITION TRANSIENTS IN SOLID OXIDE FUEL CELL GAS TURBINE HYBRID SYSTEMS FOR POLYGENERATION APPLICATIONS

Harun, Nor Farida 11 1900 (has links)
The potential of Solid Oxide Fuel Cell Gas Turbine (SOFC/GT) hybrid systems for fuel flexibility makes this technology greatly attractive for system hybridization with various fuel processing units in advanced power generation systems and/or polygeneration plants. Such hybrid technologies open up the possibility and opportunities for improvement of system reliabilities and operabilities. However, SOFC/GT hybrid systems have not yet reached their full potential in term of capitalizing on the synergistic benefits of fuel cell and gas turbine cycles. Integrating fuel cells with gas turbine and other components for transient operations increases the risk for exposure to rapid and significant changes in process dynamics and performance, which are primarily associated with fuel cell thermal management and compressor surge. This can lead to severe fuel cell failure, shaft overspeed, and gas turbine damage. Sufficient dynamic control architectures should be made to mitigate undesirable dynamic behaviours and/or system constraint violations before this technology can be commercialized. But, adequate understanding about dynamic coupling interactions between system components in the hybrid configuration is essential. Considering this critical need for system identification of SOFC/GT hybrid in fuel flexible systems, this thesis investigates the dynamic performance of SOFC/GT hybrid technology in response to fuel composition changes. Hardware-based simulations, which combined actual equipment of direct-fired recuperated gas turbine system and simulated fuel cell subsystem, are used to experimentally investigate the impacts of fuel composition changes on the SOFC/GT hybrid system, reducing potentially large inaccuracies in the dynamic study. The impacts of fuel composition in a closed loop operation using turbine speed control were first studied for the purpose of simplicity. Quantification of safe operating conditions for dynamic operations associated with carbon deposition and compressor stall and surge was done prior to the execution of experimentation. With closed loop tests, the dynamic performance of SOFC/GT hybrid technology due to a transition in gas composition could be uniquely characterized, eliminating the interactive effects of other process variables and disturbances. However, for an extensive system analysis, open loop tests (without turbine speed control) were also conducted such that potential coupling impacts exhibited by the SOFC/GT hybrid during fuel transients could be explored. Detailed characterization of SOFC/GT dynamic performance was performed to identify the interrelationship of each fuel cell variable in response to fuel composition dynamics and their contributions to operability of the system. As a result of lowering LHV content in the fuel feed, which involved a transition from coal-derived syngas to humidified methane composition in the SOFC anode, the system demonstrated a dramatic transient increase in fuel cell thermal effluent with a time scale of seconds, resulting from the conversion of fuel cell thermal energy storage into chemical energy. This transient was highly associated with the dynamics of solid and gas temperatures, heat flux, heat generation in the fuel cell due to perturbations in methane reforming, water-gas shifting, and electrochemical hydrogen oxidation. In turn, the dramatic changes in fuel cell thermal effluent resulting from the anode composition changes drove the turbine transients that caused significant cathode airflow fluctuations. This study revealed that the cathode air mass flow change was a major linking event during fuel composition changes in the SOFC/GT hybrid system. Both transients in cathode air mass flow and anode composition significantly affected the hybrid system performance. Due to significant coupling between fuel composition transitions and cathode air mass flow changes, thermal management of SOFC/GT hybrid systems might be challenging. Yet, it was suggested that modulating cathode air flow offered promise for effective dynamic control of SOFC/GT hybrid systems with fuel flexibility. / Thesis / Doctor of Philosophy (PhD)
15

The Development of a Gridded Weather Typing Classification Scheme

Lee, Cameron C. 15 January 2014 (has links)
No description available.
16

Experiments And Analysis on Wood Gasification in an Open Top Downdraft Gasifier

Mahapatra, Sadhan January 2016 (has links) (PDF)
The thesis, through experimental and numerical investigations reports on the work related to packed bed reactors in co-current configuration for biomass gasification. This study has extensively focused on the gasification operating regimes and addressing the issues of presence of tar, an undesirable component for engine application. Systematically, the influence of fuel properties on the gasification process has been studied using single particle analysis and also in packed bed reactors. Studies related to the effect of fuel properties - size, surface area volume ratio and density on the reactor performance are addressed. The influence of these parameters on the propagation rate which indirectly influences the residence time, tar generation, gas compositions is explicitly elucidated. Most of the reported work in literature primarily focuses on counter-current configurations and analysis on propagation flame front/ignition mass flux and temperature profiles mostly under the combustion regime. In this work, flame propagation front movement, bed movement and effective movement for a co-current packed bed reactor of different reactor capacities and a generalized approach towards establishing ‘effective propagation rate’ has been proposed. The work also reports on the importance of particle size and sharing of air from the top and through nozzles on tar generation in the open top down draft reactor configuration. Firstly, pyrolysis, an important component of the thermochemical conversion process has been studied using the flaming time for different biomass samples having varying size, shape and density. The elaborate experiments on the single particle study provides an insight into the reasons for high tar generation for wood flakes/coconut shells and also identifies the importance of the fuel particle geometry related to surface area and volume ratio. Effect of density by comparing the flaming rate of wood flakes and coconut shells with the wood sphere for an equivalent diameter is highlighted. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes and similar values for coconut shells compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to nearly fast pyrolysis process resulting in higher tar fraction with low char yield. Similarly, time for pyrolysis increases with density as observed from the experimental measurements by using coconut shells and wood flakes and concludes the influence on the performance of packed bed reactors. Studies on co-current reactor under various operating conditions from closed top reactor to open top reburn configuration suggests improved residence time reduces tar generation. This study establishes, increased residence time with staged air flow has a better control on residence time and yields lower tar in the raw gas. Studies on the influence of air mass flux on the propagation rate, peak temperature, and gas quality, establishes the need to consider bed movement in the case of co-current packed bed reactor. It is also observed that flame front propagation rate initially increases as the air mass flux is increased, reaches a peak and subsequently decreases. With increase in air mass flux, fuel consumption increases and thereby the bed movement. The importance of bed movement and its effect on the propagation front movement has been established. To account for variation in the fuel density, normalized propagation rate or the ignition mass flux is a better way to present the result. The peak flame front propagation rates are 0.089 mm/s for 10 % moist wood at an air mas flux of 0.130 kg/m2-s and while 0.095 mm/s for bone-dry wood at an air mass flux of 0.134 kg/m2-s. These peak propagation rates occur with the air mass flux in the range of 0.130 to 0.134 kg/m2-s. The present results compare well with those available in the literature on the effective propagation rate with the variation of air mass flux, and deviations are linked to fuel properties. The propagation rate correlates with mass flux as ̇ . during the increasing regime of the front movement. The extinction of flame propagation or the front receding has been established both experimentally supported from the model analysis and is found to be at an air mass flux of 0.235 kg/m2-s. The volume fraction of various gaseous species at the reactor exits obtained from the experiment is 14.89±0.28 % CO2, 15.75±0.43 % CO and 11.09±1.99 % H2 respectively with the balance being CH4 and N2. The model analysis using an in-house program developed for packed bed reactor provide a comprehensive understanding with respect to the performance of packed bed reactor under gasification conditions. The model addresses the dependence on air mass flux on gas composition and propagation rate and is used to validate the experimental results. Based on the energy balance in the reaction front, the analysis clearly identifies the reasons for stable propagation front and receding front in a co-current reactor. From the experiments and modelling studies, it is evident that turn-down ratio of a downdraft gasification system is scientifically established. Both the experimental and the numerical studies presented in the current work establishes that the physical properties of the fuel have an impact on the performance of the co-current reactor and for the first time, the importance of bed movement on the propagation rate is identified.

Page generated in 0.0479 seconds